Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Life Sciences

Utah State University

Chemistry and Biochemistry Faculty Publications

Series

2016

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Infrared Spectroscopy Of The Nitrogenase Mofe Protein Under Electrochemical Control: Potential-Triggered Co Binding, P. Paengnakorn, Philip A. Ash, Sudipta K. Shaw, Karamatullah Danyal, T. Chen, Dennis R. Dean, Lance C. Seefeldt, Kylie A. Vincent Oct 2016

Infrared Spectroscopy Of The Nitrogenase Mofe Protein Under Electrochemical Control: Potential-Triggered Co Binding, P. Paengnakorn, Philip A. Ash, Sudipta K. Shaw, Karamatullah Danyal, T. Chen, Dennis R. Dean, Lance C. Seefeldt, Kylie A. Vincent

Chemistry and Biochemistry Faculty Publications

We demonstrate electrochemical control of the nitrogenase MoFe protein, in the absence of Fe protein or ATP, using europium(III/II) polyaminocarboxylate complexes as electron transfer mediators. This allows the potential dependence of proton reduction and inhibitor (CO) binding to the active site FeMo-cofactor to be established. Reduction of protons to H2 is catalyzed by the wild type MoFe protein and Β-98Tyr→His and Β-99Phe→His variants of the MoFe protein at potentials more negative than -800 mV (vs. SHE), with greater electrocatalytic proton reduction rates observed for the variants compared to the wild type protein. Electrocatalytic proton reduction is strongly …


Interactions Of Nucleic Acid Bases With Temozolomide. Stacked, Perpendicular, And Coplanar Heterodimers, Okuma Emile Kasende, Steve Scheiner Aug 2016

Interactions Of Nucleic Acid Bases With Temozolomide. Stacked, Perpendicular, And Coplanar Heterodimers, Okuma Emile Kasende, Steve Scheiner

Chemistry and Biochemistry Faculty Publications

Temozolomide (TMZ) was paired with each of the five nucleic acid bases, and the potential energy surface searched for all minima, in the context of dispersion-corrected density functional theory and MP2 methods. Three types of arrangements were observed, with competitive stabilities. Coplanar H-bonding structures, reminiscent of Watson–Crick base pairs were typically the lowest in energy, albeit by a small amount. Also very stable were perpendicular arrangements that included one or more H-bonds. The two monomers were stacked approximately parallel to one another in the third category, some of which contained weak and distorted H-bonds. Dispersion was found to be a …


Monitoring The Charge Distribution During Proton And Sodium Ion Conduction Along Chains Of Water Molecules And Protein Residues, Steve Scheiner Aug 2016

Monitoring The Charge Distribution During Proton And Sodium Ion Conduction Along Chains Of Water Molecules And Protein Residues, Steve Scheiner

Chemistry and Biochemistry Faculty Publications

Quantum calculations are used to determine the level of delocalization of the charge of a cation as it translates along a chain of water molecules or glycine residues. Charge dispersal is monitored via the molecular electrostatic potential and the dipole moment of the entire system. The positive charge is largely localized on the water molecule on which the proton is situated, but becomes more intense and extended as the proton moves along the chain. The positive charge is more delocalized in protonated polyglycine, where it extends over at least an entire residue. Displacement of the proton along the chain intensifies …