Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Life Sciences

University of Montana

Series

2014

Biomass burning

Articles 1 - 1 of 1

Full-Text Articles in Physical Sciences and Mathematics

Aerosol Single Scattering Albedo Dependence On Biomass Combustion Efficiency: Laboratory And Field Studies, Shang Liu, Allison C. Aiken, Caleb Arata, Manvendra K. Dubey, C. Stockwell, Robert Yokelson, Elizabeth A. Stone, Thilina Jayarathne, Allen L. Robinson, Paul J. Demott, Sonia M. Kreidenweis Jan 2014

Aerosol Single Scattering Albedo Dependence On Biomass Combustion Efficiency: Laboratory And Field Studies, Shang Liu, Allison C. Aiken, Caleb Arata, Manvendra K. Dubey, C. Stockwell, Robert Yokelson, Elizabeth A. Stone, Thilina Jayarathne, Allen L. Robinson, Paul J. Demott, Sonia M. Kreidenweis

Chemistry and Biochemistry Faculty Publications

Single scattering albedo (ω) of fresh biomass burning (BB) aerosols produced from 92 controlled laboratory combustion experiments of 20 different woods and grasses was analyzed to determine the factors that control the variability in ω. Results show that ω varies strongly with fire-integrated modified combustion efficiency (MCEFI)—higher MCEFI results in lower ω values and greater spectral dependence of ω. A parameterization of ω as a function of MCEFI for fresh BB aerosols is derived from the laboratory data and is evaluated by field observations from two wildfires. The parameterization suggests that MCEFI explains 60% of …