Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Life Sciences

Michigan Technological University

Series

Great Lakes Research Center

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Reconstructing 42 Years (1979–2020) Of Great Lakes Surface Temperature Through A Deep Learning Approach, Miraj Kayastha, Tao Liu, Daniel Titze, Timothy C. Havens, Chenfu Huang, Pengfei Xue Aug 2023

Reconstructing 42 Years (1979–2020) Of Great Lakes Surface Temperature Through A Deep Learning Approach, Miraj Kayastha, Tao Liu, Daniel Titze, Timothy C. Havens, Chenfu Huang, Pengfei Xue

Michigan Tech Publications, Part 2

Accurate estimates for the lake surface temperature (LST) of the Great Lakes are critical to understanding the regional climate. Dedicated lake models of various complexity have been used to simulate LST but they suffer from noticeable biases and can be computationally expensive. Additionally, the available historical LST datasets are limited by either short temporal coverage (<30 >years) or lower spatial resolution (0.25° × 0.25°). Therefore, in this study, we employed a deep learning model based on Long Short-Term Memory (LSTM) neural networks to produce a daily LST dataset for the Great Lakes that spans an unparalleled 42 years (1979–2020) at …


Integrating Deep Learning And Hydrodynamic Modeling To Improve The Great Lakes Forecast, Pengfei Xue, Aditya Wagh, Gangfeng Ma, Yilin Wang, Yongchao Yang, Tao Liu, Chenfu Huang May 2022

Integrating Deep Learning And Hydrodynamic Modeling To Improve The Great Lakes Forecast, Pengfei Xue, Aditya Wagh, Gangfeng Ma, Yilin Wang, Yongchao Yang, Tao Liu, Chenfu Huang

Michigan Tech Publications

The Laurentian Great Lakes, one of the world’s largest surface freshwater systems, pose a modeling challenge in seasonal forecast and climate projection. While physics-based hydrodynamic modeling is a fundamental approach, improving the forecast accuracy remains critical. In recent years, machine learning (ML) has quickly emerged in geoscience applications, but its application to the Great Lakes hydrodynamic prediction is still in its early stages. This work is the first one to explore a deep learning approach to predicting spatiotemporal distributions of the lake surface temperature (LST) in the Great Lakes. Our study shows that the Long Short-Term Memory (LSTM) neural network, …


The Changing Face Of Winter: Lessons And Questions From The Laurentian Great Lakes, Ted Ozersky, Andrew J. Bramburger, Ashley K. Elgin, Henry A. Vanderploeg, Jia Wang, Jay A. Austin, Guy Meadows, Et. Al. May 2021

The Changing Face Of Winter: Lessons And Questions From The Laurentian Great Lakes, Ted Ozersky, Andrew J. Bramburger, Ashley K. Elgin, Henry A. Vanderploeg, Jia Wang, Jay A. Austin, Guy Meadows, Et. Al.

Michigan Tech Publications

Among its many impacts, climate warming is leading to increasing winter air temperatures, decreasing ice cover extent, and changing winter precipitation patterns over the Laurentian Great Lakes and their watershed. Understanding and predicting the consequences of these changes is impeded by a shortage of winter-period studies on most aspects of Great Lake limnology. In this review, we summarize what is known about the Great Lakes during their 3–6 months of winter and identify key open questions about the physics, chemistry, and biology of the Laurentian Great Lakes and other large, seasonally frozen lakes. Existing studies show that winter conditions have …