Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Spatial And Temporal Variation Of Offshore Wind Power And Its Values Along The Central California Coast, Yi-Hui Wang, Ryan K. Walter, Crow White, Matthew D. Kehrli, Stephen F. Hamilton, Patrick H. Soper, Benjamin I. Ruttenberg Oct 2019

Spatial And Temporal Variation Of Offshore Wind Power And Its Values Along The Central California Coast, Yi-Hui Wang, Ryan K. Walter, Crow White, Matthew D. Kehrli, Stephen F. Hamilton, Patrick H. Soper, Benjamin I. Ruttenberg

Physics

The analysis of the spatiotemporal variability of wind power remains limited during the planning stage of an offshore wind farm. This study provides a framework to investigate how offshore wind power varies along the Central California Coast over diurnal and seasonal time scales, which is critical for reliability and functionality of the grid system. We find that offshore wind power in this region peaks during evening hours across all seasons and maximizes in spring and summer. The timing of peak offshore wind power production better aligns with that of peak demand across California than solar and land-based wind power production, …


Fabrication Of Miniaturized Paper-Based Microfluidic Devices (Micropads), E. Brandon Strong, Spencer A. Schultz, Andres Martinez, Nathaniel W. Martinez Jan 2019

Fabrication Of Miniaturized Paper-Based Microfluidic Devices (Micropads), E. Brandon Strong, Spencer A. Schultz, Andres Martinez, Nathaniel W. Martinez

Chemistry and Biochemistry

Microfluidic paper-based analytical devices (microPADs) are emerging as cost-effective and portable platforms for point-of-care assays. A fundamental limitation of microPAD fabrication is the imprecise nature of most methods for patterning paper. The present work demonstrates that paper patterned via wax printing can be miniaturized by treating it with periodate to produce higher-resolution, high-fidelity microPADs. The optimal miniaturization parameters were determined by immersing microPADs in various concentrations of aqueous sodium periodate (NaIO4) for varying lengths of time. This treatment miniaturized microPADs by up to 80% in surface area, depending on the concentration of periodate and length of the reaction …