Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Identification Of Disufide Bond Formation Between Mitoneet And Glutamate Dehydrogenase 1, Morgan E. Roberts, Jacquelyn P. Crail, Megan M. Laffoon, William G. Fernandez, Michael A. Menze, Mary E. Konkle Dec 2013

Identification Of Disufide Bond Formation Between Mitoneet And Glutamate Dehydrogenase 1, Morgan E. Roberts, Jacquelyn P. Crail, Megan M. Laffoon, William G. Fernandez, Michael A. Menze, Mary E. Konkle

Faculty Research & Creative Activity

MitoNEET is a protein that was identified as a drug target for diabetes, but its cellular function as well as its role in diabetes remains elusive. Protein pull-down experiments identified glutamate dehydrogenase 1 (GDH1) as a potential binding partner. GDH1 is a key metabolic enzyme with emerging roles in insulin regulation. MitoNEET forms a covalent complex with GDH1 through disulfide bond formation and acts as an activator. Proteomic analysis identified the specific cysteine residues that participate in the disulfide bond. This is the first report that effectively links mitoNEET to activation of the insulin regulator GDH1.


Identification Of Disulfide Bond Formation Between Mitoneet And Glutamate Dehydrogenase 1, Morgan E. Roberts, Jacquelyn P. Crail, Megan M. Laffoon, William G. Fernandez, Michael A. Menze, Mary E. Konkle Dec 2013

Identification Of Disulfide Bond Formation Between Mitoneet And Glutamate Dehydrogenase 1, Morgan E. Roberts, Jacquelyn P. Crail, Megan M. Laffoon, William G. Fernandez, Michael A. Menze, Mary E. Konkle

Faculty Research & Creative Activity

MitoNEET is a protein that was identified as a drug target for diabetes, but its cellular function as well as its role in diabetes remains elusive. Protein pull-down experiments identified glutamate dehydrogenase 1 (GDH1) as a potential binding partner. GDH1 is a key metabolic enzyme with emerging roles in insulin regulation. MitoNEET forms a covalent complex with GDH1 through disulfide bond formation and acts as an activator. Proteomic analysis identified the specific cysteine residues that participate in the disulfide bond. This is the first report that effectively links mitoNEET to activation of the insulin regulator GDH1.


Identification Of Disufide Bond Formation Between Mitoneet And Glutamate Dehydrogenase 1., Morgan Roberts, Jacquelyn Crail, Megan Laffoon, William Fernandez, Michael Menze, Mary Konkle Dec 2013

Identification Of Disufide Bond Formation Between Mitoneet And Glutamate Dehydrogenase 1., Morgan Roberts, Jacquelyn Crail, Megan Laffoon, William Fernandez, Michael Menze, Mary Konkle

Faculty Scholarship

MitoNEET is a protein that was identified as a drug target for diabetes, but its cellular function as well as its role in diabetes remains elusive. Protein pull-down experiments identified glutamate dehydrogenase 1 (GDH1) as a potential binding partner. GDH1 is a key metabolic enzyme with emerging roles in insulin regulation. MitoNEET forms a covalent complex with GDH1 through disulfide bond formation and acts as an activator. Proteomic analysis identified the specific cysteine residues that participate in the disulfide bond. This is the first report that effectively links mitoNEET to activation of the insulin regulator GDH1.


Iapp Aggregation And Cellular Toxicity Are Inhibited By 1,2,3,4,6-Penta-O-Galloyl-Β-D-Glucose, Edward Bruno, Catalina Pereira, Karla P. Roman, Marisa Takiguchi, Pei-Yu Kao, Luiza A. Nogaj, David A. Moffet Mar 2013

Iapp Aggregation And Cellular Toxicity Are Inhibited By 1,2,3,4,6-Penta-O-Galloyl-Β-D-Glucose, Edward Bruno, Catalina Pereira, Karla P. Roman, Marisa Takiguchi, Pei-Yu Kao, Luiza A. Nogaj, David A. Moffet

Chemistry and Biochemistry Faculty Works

The polyphenol, 1,2,3,4,6-penta-O-galloyl-β-D-glucose (PGG) has been found to exhibit a host of positive pharmacologic activities, including anti-cancer and anti-diabetic. Little is known about the mode of action of PGG in yielding these positive activities. We show here that PGG is a potent inhibitor of IAPP (islet amyloid polypeptide, amylin) aggregation. Preventing the initial aggregation event of IAPP is one strategy for slowing, and possibly preventing, the toxic effects of IAPP oligomeric intermediates. Equal molar ratios of PGG to IAPP substantially reduced the ability of IAPP to bind thioflavin T. Atomic force microscopy revealed that PGG prevented amyloid-based fiber formation under …