Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physical Sciences and Mathematics

Towards Catalytic Oxidative Depolymerization Of Lignin, Justin K. Mobley Jan 2016

Towards Catalytic Oxidative Depolymerization Of Lignin, Justin K. Mobley

Theses and Dissertations--Chemistry

Lignin is one of the most abundant and underutilized biopolymers on earth. Primarily composed on three monolignol units (sinapyl, coniferyl, and p-coumaryl alcohol), lignin is formed through a radical pathway resulting in an assortment of linkages, of which the β-O-4 linkage is the most prevalent (up to 60% in some hardwood species). In planta, lignin plays an important role in water transport and in protecting plants from chemical and biological attack. Traditional attempts to depolymerize lignin have focused on the cleavage of β-O-4 linkages via thermal or reductive routes. However these pathways lead to low-value, unstable product mixtures. Moreover, …


Organometallic Materials: Ferroceno[C]Thiophenes And 1,2-Bisthienylmetallocenes, Surya R. Banks Jan 2016

Organometallic Materials: Ferroceno[C]Thiophenes And 1,2-Bisthienylmetallocenes, Surya R. Banks

Theses and Dissertations--Chemistry

Development of synthetic routes toward two general organometallic frameworks was undertaken. The first project involved synthetic attempts of substituted and unsubstituted ferroceno[c]thiophene while the second one was the synthesis of 1,2-dithienylmetallocenes. The long-term goal of this work is to lay the foundations for study of electronic, electrochromic, redox, and optical properties of thiophene-based materials integrated with organometallic systems such as ferrocene, ruthenocene and cymantrene. The synthetic pathway for the target molecule in the first project involved converting 1,2-bis(hydroxymethyl)ferrocene to 1,2-bis(thiouroniummethyl)ferrocene with thiourea under acidic conditions. Refluxing the salt in base followed by acidification resulted in 1,2-bis(mercaptomethyl)ferrocene, which is …


Using Conventional And In Situ Transmission Electron Microscopy Techniques To Understand Nanoscale Crystallography, Bethany M. Hudak Jan 2016

Using Conventional And In Situ Transmission Electron Microscopy Techniques To Understand Nanoscale Crystallography, Bethany M. Hudak

Theses and Dissertations--Chemistry

Transmission electron microscopy (TEM) is a powerful tool for studying solidstate crystalline systems. With the advances in aberration correction, monochromation, and in situ capabilities, these microscopes are now more useful for addressing fundamental materials chemistry problems than ever before. This dissertation will illustrate the ways in which I have been using high-resolution imaging and in situ heating in the TEM during my Ph.D. research to investigate unique solid state chemistry questions.

This dissertation will focus on four unique crystal systems: thermoelectric skutterudite crystals, vapor-liquid-solid (VLS) grown nanowires, and hafnium dioxide nanorods. Although these systems are very different from one another, …


Ceria Based Catalysts For Low Temperature NoX Storage And Release, Samantha Jones Jan 2016

Ceria Based Catalysts For Low Temperature NoX Storage And Release, Samantha Jones

Theses and Dissertations--Chemistry

Model ceria catalysts were evaluated for NOx storage and desorption performance under lean conditions. Three different storage temperatures (80 °C, 120 °C, and 160 °C) were utilized to evaluate NOx storage. Higher temperatures resulted in higher NOx storage. It was observed that storage of platinum promoted ceria resulted in higher NOx storage compared to promotion with palladium. NOx desorption behavior of platinum promoted ceria indicated that the majority of NOx is released at high temperatures (> 350 °C), comparatively palladium promotion released more of the stored NOx at lower temperatures. Diffuse Reflectance Infrared Fourier …


The Optimization Of The Synthesis And Characterization Of Vapor-Liquid-Solid Grown Zno Nanowires, Silas R. Fiefhaus Jan 2016

The Optimization Of The Synthesis And Characterization Of Vapor-Liquid-Solid Grown Zno Nanowires, Silas R. Fiefhaus

Theses and Dissertations--Chemistry

ZnO nanowires are a promising material with great semiconductor properties. ZnO nanowires were prepared by carbothermal reduction and vapor-liquid-solid growth mechanism. Altering a variety of parameters ranging from mole to mole ratio of ZnO to C all the way to gas flow rate was examined. The nanowires were then characterized and their morphology examined under a SEM to observe what effect the parameter had on the morphology of the nanowires. From the experiments and the parameters tested it was observed that in order to produce the highest quality straight nanowires one should use a mole to mole ratio of ZnO …


Design, Synthesis And Physicochemical Analysis Of Ruthenium(Ii) Polypyridyl Complexes For Application In Phototherapy And Nucleic Acid Sensing, Erin Melissa Wachter Jan 2016

Design, Synthesis And Physicochemical Analysis Of Ruthenium(Ii) Polypyridyl Complexes For Application In Phototherapy And Nucleic Acid Sensing, Erin Melissa Wachter

Theses and Dissertations--Chemistry

Current chemotherapeutics exhibit debilitating side effects as a result of their toxicity to healthy tissues. Reducing these side effects by developing chemotherapeutics with selectivity for cancer cells is an active area of research. Phototherapy is one promising modality for selective treatment, where drug molecules are “turned on” when irradiated with light, reducing damage to healthy tissues by spatially restricting the areas exposed to irradiation. A second approach to improve selectivity is to exploit the differences in cancerous versus healthy cells, such as increased metabolism and/or upregulation of cell surface receptors. Ruthenium(II) polypyridyl complexes are candidates for phototherapy due to their …