Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Geology

Doctoral Dissertations

Theses/Dissertations

2022

Mars

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Geochemical And Climatic Controls On The Sulfur Cycle In Volcanic Settings: Implications For The Origin Of Sulfur-Rich Deposits Investigated By The Spirit And Opportunity Rovers On Mars, Rhianna D. Moore Dec 2022

Geochemical And Climatic Controls On The Sulfur Cycle In Volcanic Settings: Implications For The Origin Of Sulfur-Rich Deposits Investigated By The Spirit And Opportunity Rovers On Mars, Rhianna D. Moore

Doctoral Dissertations

On Earth, volcanic activity with elevated sulfur (S) degassing in the presence of water leads to the formation of hydrothermal deposits enriched in S-bearing minerals. Similar processes may have been an important source of S on Mars. The landing sites of Gusev crater and Meridiani Planum investigated by the Spirit and Opportunity rovers, respectively, showed elevated SO42- [sulfate] concentrations, suggesting high- and low-temperature aqueous processes. However, the SO42- contribution from subsequent aqueous weathering of hydrothermal S deposits has been poorly constrained, thus its importance to regional S cycling in the landing sites is unclear. In this …


Fan And Fracture Formation: Morphologic And Sedimentologic Characteristics Of Alluvial Fans On Earth And Mars, And Fracture Population Distributions On Europa, Claire A. Mondro Aug 2022

Fan And Fracture Formation: Morphologic And Sedimentologic Characteristics Of Alluvial Fans On Earth And Mars, And Fracture Population Distributions On Europa, Claire A. Mondro

Doctoral Dissertations

Planetary science is inherently limited by the resolution and coverage of the currently available data. What can be observed in person, measured precisely in high-resolution data, or sampled for lab analysis in terrestrial investigations ca only be inferred, modeled, or hypothesized on other planetary bodies. The Earth remains our best tool for understanding the geologic systems of the rest of the Solar System. By applying what is known or can be measured about terrestrial systems, it is possible to determine how large-scale controls and observable features relate to geologic complexity that is beyond the resolution of planetary data. This dissertation …