Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Geology

Missouri University of Science and Technology

Electrical Conductivity

Articles 1 - 6 of 6

Full-Text Articles in Physical Sciences and Mathematics

Self-Potential Signals Generated By The Corrosion Of Buried Metallic Objects With Application To Contaminant Plumes, Justin B. R. Rittgers, Andre Revil, Marios C. Karaoulis, Michael A. Mooney, Lee D. Slater, Estella A. Atekwana Sep 2013

Self-Potential Signals Generated By The Corrosion Of Buried Metallic Objects With Application To Contaminant Plumes, Justin B. R. Rittgers, Andre Revil, Marios C. Karaoulis, Michael A. Mooney, Lee D. Slater, Estella A. Atekwana

Geosciences and Geological and Petroleum Engineering Faculty Research & Creative Works

Large-amplitude (>100 mV) negative electric (self)-potential anomalies are often observed in the vicinity of buried metallic objects and ore bodies or over groundwater plumes associated with organic contaminants. To explain the physical and chemical mechanisms that generate such electrical signals, a controlled laboratory experiment was carried out involving two metallic cylinders buried with vertical and horizontal orientations and centered through and in the capillary fringe within a sandbox. The 2D and 3D self-potential (SP) data were collected at several time steps along with collocated pH and redox potential measurements. Large dipolar SP and redox potential anomalies developed in association …


Temporal Geophysical Signatures From Contaminant-Mass Remediation, Vukenkeng Che-Alota, Estella A. Atekwana, Eliot A. Atekwana, William August Sauck, D. Dale Werkema Jul 2009

Temporal Geophysical Signatures From Contaminant-Mass Remediation, Vukenkeng Che-Alota, Estella A. Atekwana, Eliot A. Atekwana, William August Sauck, D. Dale Werkema

Geosciences and Geological and Petroleum Engineering Faculty Research & Creative Works

We have previously documented changes in bulk electrical conductivity, self-potential (SP), and ground-penetrating-radar (GPR) reflections in a field setting caused by biogeochemical transformations of hydrocarbon-contaminated media. These transformations are associated with hydrocarbon biodegradation. The results of surface geophysical surveys acquired in 1996, 2003, and 2007 document changes in geophysical signatures associated with removing hydrocarbon mass in the contaminated zone. Initial investigations in 1996 showed that relative to background, the contaminated area was characterized by higher bulk electrical conductivity, positive SP anomaly, and attenuated GPR reflections. Repeated surveys in 2003 and 2007 over the contaminated area showed that in 2007, the …


Microbial Nanowires: Is The Subsurface "Hardwired"?, Dimitrios Ntarlagiannis, Estella A. Atekwana, Eric A. Hill, Yuri A. Gorby Sep 2007

Microbial Nanowires: Is The Subsurface "Hardwired"?, Dimitrios Ntarlagiannis, Estella A. Atekwana, Eric A. Hill, Yuri A. Gorby

Geosciences and Geological and Petroleum Engineering Faculty Research & Creative Works

The Earth's shallow subsurface results from integrated biological, geochemical, and physical processes. Methods are sought to remotely assess these interactive processes, especially those catalysed by micro-organisms. Using saturated sand columns and the metal reducing bacterium Shewanella oneidensis MR-1, we show that electrically conductive appendages called bacterial nanowires are directly associated with electrical potentials. No significant electrical potentials were detectable in columns inoculated with mutant strains that produced non-conductive appendages. Scanning electron microscopy imaging revealed a network of nanowires linking cells-cells and cells to mineral surfaces, "hardwiring" the entire length of the column. We hypothesize that the nanowires serve as conduits …


Microbial Growth And Biofilm Formation In Geologic Media Is Detected With Complex Conductivity Measurements, Caroline A. Davis, Estella A. Atekwana, Eliot A. Atekwana, Lee D. Slater, Silvia Rossbach, Melanie R. Mormile Sep 2006

Microbial Growth And Biofilm Formation In Geologic Media Is Detected With Complex Conductivity Measurements, Caroline A. Davis, Estella A. Atekwana, Eliot A. Atekwana, Lee D. Slater, Silvia Rossbach, Melanie R. Mormile

Geosciences and Geological and Petroleum Engineering Faculty Research & Creative Works

Complex conductivity measurements (0.1-1000 Hz) were obtained from biostimulated sand-packed columns to investigate the effect of microbial growth and biofilm formation on the electrical properties of porous media. Microbial growth was verified by direct microbial counts, pH measurements, and environmental scanning electron microscope imaging. Peaks in imaginary (interfacial) conductivity in the biostimulated columns were coincident with peaks in the microbial cell concentrations extracted from sands. However, the real conductivity component showed no discernible relationship to microbial cell concentration. We suggest that the observed dynamic changes in the imaginary conductivity (σ″) arise from the growth and attachment of microbial cells and …


Evidence For Microbial Enhanced Electrical Conductivity In Hydrocarbon-Contaminated Sediments, Estella A. Atekwana, Eliot A. Atekwana, D. Dale Werkema, Jonathan P. Allen, Laura A. Smart, Joseph W. Duris, Daniel P. Cassidy, William A. Sauck, Silvia Rossbach Dec 2004

Evidence For Microbial Enhanced Electrical Conductivity In Hydrocarbon-Contaminated Sediments, Estella A. Atekwana, Eliot A. Atekwana, D. Dale Werkema, Jonathan P. Allen, Laura A. Smart, Joseph W. Duris, Daniel P. Cassidy, William A. Sauck, Silvia Rossbach

Geosciences and Geological and Petroleum Engineering Faculty Research & Creative Works

Bulk electrical conductivity of sediments during microbial mineralization of diesel was investigated in a mesoscale laboratory experiment consisting of biotic contaminated and uncontaminated columns. Population numbers of oil degrading microorganisms increased with a clear pattern of depth zonation within the contaminated column not observed in the uncontaminated column. Microbial community structure determined from ribosomal DNA intergenic spacer analysis showed a highly specialized microbial community in the contaminated column. The contaminated column showed temporal increases in bulk conductivity, dissolved inorganic carbon, and calcium, suggesting that the high bulk conductivity is due to enhanced mineral weathering from microbial activity. The greatest change …


In-Situ Apparent Conductivity Measurements And Microbial Population Distribution At A Hydrocarbon-Contaminated Site, Estella A. Atekwana, D. Dale Werkema, Joseph W. Duris, Silvia Rossbach, Eliot A. Atekwana, William A. Sauck, Daniel P. Cassidy, Jay Means, Franklyn D. Legall Jan 2004

In-Situ Apparent Conductivity Measurements And Microbial Population Distribution At A Hydrocarbon-Contaminated Site, Estella A. Atekwana, D. Dale Werkema, Joseph W. Duris, Silvia Rossbach, Eliot A. Atekwana, William A. Sauck, Daniel P. Cassidy, Jay Means, Franklyn D. Legall

Geosciences and Geological and Petroleum Engineering Faculty Research & Creative Works

We investigated the bulk electrical conductivity and microbial population distribution in sediments at a site contaminated with light nonaqueous-phase liquid (LNAPL). The bulk conductivity was measured using in-situ vertical resistivity probes; the most probable number method was used to characterize the spatial distribution of aerobic heterotrophic and oil-degrading microbial populations. The purpose of this study was to assess if high conductivity observed at aged LNAPL-impacted sites may be related to microbial degradation of LNAPL. The results show higher bulk conductivity coincident with LNAPL-impacted zones, in contrast to geoelectrical models that predict lower conductivity in such zones. The highest bulk conductivity …