Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Modeling Vulnerability Of Groundwater To Pollution Under Future Scenarios Of Climate Change And Biofuels-Related Land Use Change: A Case Study In North Dakota, Usa, Ruopu Li, James W. Merchant Mar 2013

Modeling Vulnerability Of Groundwater To Pollution Under Future Scenarios Of Climate Change And Biofuels-Related Land Use Change: A Case Study In North Dakota, Usa, Ruopu Li, James W. Merchant

School of Natural Resources: Faculty Publications

Modeling groundwater vulnerability to pollution is critical for implementing programs to protect groundwater quality.Most groundwater vulnerability modeling has been based on current hydrogeology and land use condi- tions. However, groundwater vulnerability is strongly dependent on factors such as depth-to-water, recharge and land use conditions thatmay change in response to future changes in climate and/or socio-economic condi- tions. In this research, a modeling framework, which employs three sets of models linked within a geographic information system (GIS) environment, was used to evaluate groundwater pollution risks under future climate and land use changes in North Dakota. The results showed that areas with …


Review Of Us And Eu Initiatives Toward Development, Demonstration, And Commercialization Of Lignocellulosic Biofuels, Venkatesh Balan, David Chiaramonti, Sandeep Kumar Jan 2013

Review Of Us And Eu Initiatives Toward Development, Demonstration, And Commercialization Of Lignocellulosic Biofuels, Venkatesh Balan, David Chiaramonti, Sandeep Kumar

Civil & Environmental Engineering Faculty Publications

Advanced biofuels produced from lignocellulosic biomass offer an exciting opportunity to produce renewable liquid transportation fuels, biochemicals, and electricity from locally available agriculture and forest residues. The growing interest in biofuels from lignocellulosic feedstock in the United States (US) and the European Union (EU) can provide a path forward toward replacing petroleum-based fuels with sustainable biofuels which have the potential to lower greenhouse gas (GHG) emissions. The selection of biomass conversion technologies along with feedstock development plays a crucial role in the commercialization of next-generation biofuels. There has been synergy and, even with similar basic process routes, diversity in the …