Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 120

Full-Text Articles in Physical Sciences and Mathematics

Assessment Of Changes Of Complex Shoreline From Medium‑Resolution Satellite Imagery, Nikolay P. Nezlin, Julie Herman, Jonathan Hodge, Stephen Sagar, Robbi Bishop-Taylor, Guangming Zheng, John M. Digiacomo Aug 2023

Assessment Of Changes Of Complex Shoreline From Medium‑Resolution Satellite Imagery, Nikolay P. Nezlin, Julie Herman, Jonathan Hodge, Stephen Sagar, Robbi Bishop-Taylor, Guangming Zheng, John M. Digiacomo

VIMS Articles

The imagery collected by medium-resolution earth-observing satellites is a powerful and cost-effective tool for the quantitative assessment of shoreline dynamics for water bodies of different spatial scales. In this study, we utilize imagery collected in 1984–2021 on the Middle Peninsula, Virginia, bordering the Chesapeake Bay, USA, by medium-resolution (10–30 m) satellites Landsat-5/7/8 and Sentinel-2A/B. The data was managed in the Earth Analytics Interoperability Lab (EAIL) Data Cube built and configured by the Commonwealth Scientific and Industrial Research Organization (CSIRO, Australia and Chile). The assessments of shoreline change demonstrate adequate agreement with assessments based on aerial photography collected during 1937–2009 by …


Dataset: Baywide Distribution Of Benthic Ecological Functions In The Past Decades In The Chesapeake Bay, Philip Ignatoff, Xun Cai, Kara Gadeken Jan 2023

Dataset: Baywide Distribution Of Benthic Ecological Functions In The Past Decades In The Chesapeake Bay, Philip Ignatoff, Xun Cai, Kara Gadeken

Data

We undertook the collection and analysis of long-term benthos data from the Chesapeake Bay Benthic Monitoring Plan. Multiple ecological function traits related to feeding and disturbance were assigned to each observed benthic species based on a thorough literature review. The spatial distributions of the ecological function groups will be utilized in a 3D hydrodynamic biogeochemistry model simulation. This approach aids in estimating the contributions of benthos to estuarine hypoxia and nutrient dynamics. Furthermore, it fosters a connection between ecologists and modelers, promoting collaborative efforts in understanding and modeling the ecosystem.


Nitrogen Reductions Have Decreased Hypoxia In The Chesapeake Bay: Evidence From Empirical And Numerical Modeling, Luke T. Frankel, Marjorie A.M. Friedrichs, Pierre St-Laurent, Aaron J. Bever, Rom Lipcius, Gopal Bhatt, Gary W. Shenk Mar 2022

Nitrogen Reductions Have Decreased Hypoxia In The Chesapeake Bay: Evidence From Empirical And Numerical Modeling, Luke T. Frankel, Marjorie A.M. Friedrichs, Pierre St-Laurent, Aaron J. Bever, Rom Lipcius, Gopal Bhatt, Gary W. Shenk

VIMS Articles

Seasonal hypoxia is a characteristic feature of the Chesapeake Bay due to anthropogenic nutrient input from agriculture and urbanization throughout the watershed. Although coordinated management efforts since 1985 have reduced nutrient inputs to the Bay, oxygen concentrations at depth in the summer still frequently fail to meet water quality standards that have been set to protect critical estuarine living resources. To quantify the impact of watershed nitrogen reductions on Bay hypoxia during a recent period including both average discharge and extremely wet years (2016–2019), this study employed both statistical and three-dimensional (3-D) numerical modeling analyses. Numerical model results suggest that …


Management Practices For Urban Areas In The Hampton Roads Vicinity: Data Files, Gary F. Anderson Jan 2022

Management Practices For Urban Areas In The Hampton Roads Vicinity: Data Files, Gary F. Anderson

Data

During 1980 through 1981, the Virginia Institute of Marine Science conducted studies in the Hampton Roads Virginia vicinity to assess pollutant loading in runoff from various land use types. The 13 urban study areas also included established BMPs such as grassy swales and retention ponds to measure their effectiveness in reducing pollutant loads to the Chesapeake Bay. The focus was on nutrients, BOD and suspended solids. The studies were conducted with support of the U.S. EPA under section 208 of the Federal Clean Water Act.

Methods and results are documented in the associated publication. Data files were processed using SPSS …


Ware River Intensive Watershed Study Data Files - Part 2. Estuarine Receiving Water Quality, Gary F. Anderson Dec 2021

Ware River Intensive Watershed Study Data Files - Part 2. Estuarine Receiving Water Quality, Gary F. Anderson

Data

The Ware River is a small coastal estuary draining into the Chesapeake Bay estuary. VIMS monitored the Ware watershed for rain events, runoff, and impacts to the estuary from April 1979 through July 1981. This entry contains the estuarine receiving water quality monitoring data files for the portion of the study known as Part 2 – Estuarine Receiving Water Quality. A set of stations on the tidal estuarine portion of the river were sampled by-monthly during high slack tide events. The stations were also sampled during 24-hour ‘intensive surveys’ and immediately following storm events to document impacts. Methods and results …


Vims Ferry Pier Ambient Water Monitoring Data, Salinity And Temperature, Daily Summary 1947-2003, Gary F. Anderson Apr 2021

Vims Ferry Pier Ambient Water Monitoring Data, Salinity And Temperature, Daily Summary 1947-2003, Gary F. Anderson

Data

Bulk water parameters of Temperature and Salinity were measured at the VIMS Ferry Pier from 1947 to 2003. Initial methods were undocumented but likely automated with an instrument and chart recorder since the data consists of a daily high and low measurement from which a mean value was derived.

Beginning in 1971 an automated instrument recorded continuously from which 2-hour measurements were made and daily minimum and maxima were derived. Beginning in 1986 an Inter-Ocean CTD instrument placed at mid-depth was interfaced to a digital data logger (Campbell Scientific CRJ) that recorded data every six minutes, resulting in 240 measurements …


Vims Hydrofile: Ambient Water Monitoring And Meteorological Data For Chesapeake Bay And Near Coastal Shelf Waters, 1942-1982, Gary F. Anderson Jan 2021

Vims Hydrofile: Ambient Water Monitoring And Meteorological Data For Chesapeake Bay And Near Coastal Shelf Waters, 1942-1982, Gary F. Anderson

Data

Historical ambient water quality and meteorologic conditions from cruises conducted by the Virginia Institute of Marine Science in Chesapeake Bay and nearshore coastal shelf waters over a 40-year period through 1982.

Bulk water parameters were routinely measured during cruises conducted in Chesapeake Bay and nearshore coastal waters conducted by VIMS over four decades. Data were punched on 80-character cards known as ‘Form 1’ format by the VIMS central Computer Center. These were later converted to digital files. For this publication the Form 1 files were unpacked into yearly flat files containing two record types:

Station records - Contain surface observations …


Real-Time Environmental Forecasts Of The Chesapeake Bay: Model Setup, Improvements, And Online Visualization, Aaron Bever, Marjorie A.M. Friedrichs, Pierre St-Laurent Jan 2021

Real-Time Environmental Forecasts Of The Chesapeake Bay: Model Setup, Improvements, And Online Visualization, Aaron Bever, Marjorie A.M. Friedrichs, Pierre St-Laurent

VIMS Articles

Daily real-time nowcasts (current conditions) and 2-day forecasts of environmental conditions in the Chesapeake Bay have been continuously available for 4 years. The forecasts use a 3-D hydrodynamic-biogeochemical model with 1–2 km resolution and 3-D output every 6 h that includes salinity, water temperature, pH, aragonite saturation state, alkalinity, dissolved oxygen, and hypoxic volume. Visualizations of the forecasts are available through a local institutional website (www.vims.edu/hypoxia) and the MARACOOS Oceans Map portal (https://oceansmap.maracoos.org/chesapeake-bay/). Modifications to real-time graphics on the local website are routinely made based on stakeholder input and are formatted for use on a mobile …


Ware River Intensive Watershed Study Data Files: Part 1. Nonpoint Source Contributions, Gary F. Anderson Jan 2021

Ware River Intensive Watershed Study Data Files: Part 1. Nonpoint Source Contributions, Gary F. Anderson

Data

The Ware River is a small coastal estuary draining into the Chesapeake Bay estuary. VIMS monitored the Ware watershed for rain events, runoff, and impacts to the estuary from April 1979 through July 1981.

This entry contains the runoff volume, rainfall and water quality monitoring data files for the portion of the study known as Part 1 – Nonpoint source contributions. Streams and small catchments representing suburban, agricultural and forested small basins were monitored regularly and during large rainfall events to estimate pollution loading to the estuary from the watershed. Methods and results are documented in the related literature. Data …


Migration Of The Tidal Marsh Range Under Sea Level Rise For Coastal Virginia, With Land Cover Data, Julie Herman, Molly Mitchell Jan 2021

Migration Of The Tidal Marsh Range Under Sea Level Rise For Coastal Virginia, With Land Cover Data, Julie Herman, Molly Mitchell

Data

The layers in this geodatabase were intended to represent the land that is encompassed by the average tidal range as sea level rises in the Virginia coastal region, including Chesapeake Bay and tributaries, the Atlantic Ocean side of the Eastern Shore, and Virginia Beach. The data layers in this geodatabase represent each two foot range of elevation incremented by 0.5 ft (e.g. 0-2 ft, 0.5-2.5 ft, 1-3 ft, etc.) with the current land cover that exists in that range.

ArcGIS metadata is included in the geodatabase.

Further details are provided in the Geodatabase Information file located from the download tab.


Restoration Of Seagrass Habitat Leads To Rapid Recovery Of Coastal Ecosystem Services, Robert J. Orth, Jonathan S. Lefcheck, Karen S. Mcglathery, Lillian Aoki, Mark Luckenbach, Kenneth A. Moore, Matthew P.J. Oreska, Richard A. Snyder, David J. Wilcox, Bo Lusk Oct 2020

Restoration Of Seagrass Habitat Leads To Rapid Recovery Of Coastal Ecosystem Services, Robert J. Orth, Jonathan S. Lefcheck, Karen S. Mcglathery, Lillian Aoki, Mark Luckenbach, Kenneth A. Moore, Matthew P.J. Oreska, Richard A. Snyder, David J. Wilcox, Bo Lusk

VIMS Articles

There have been increasing attempts to reverse habitat degradation through active restoration, but few largescale successes are reported to guide these efforts. Here, we report outcomes from a unique and very successful seagrass restoration project: Since 1999, over 70 million seeds of a marine angiosperm, eelgrass (Zostera marina), have been broadcast into mid-western Atlantic coastal lagoons, leading to recovery of 3612 ha of seagrass. Well-developed meadows now foster productive and diverse animal communities, sequester substantial stocks of carbon and nitrogen, and have prompted a parallel restoration for bay scallops (Argopecten irradians). Restored ecosystem services are approaching historic levels, but we …


Old Macdonald Had An Aquaculture Farm, Shantelle Landry Jan 2020

Old Macdonald Had An Aquaculture Farm, Shantelle Landry

Reports

Grades: 6 Subjects: Earth Science | Natural Resources

With this activity, students will learn the importance of aquaculture and how it can be used to manage a resource.


Section: 01 Line Frame: 01, 18 October 2017: Aerial Imagery Acquired To Monitor The Distribution And Abundance Of Submerged Aquatic Vegetation In Chesapeake Bay And Coastal Bays, Robert J. Orth, David J. Wilcox, Jennifer R. Whiting, Anna K. Kenne, Erica R. Smith Jun 2018

Section: 01 Line Frame: 01, 18 October 2017: Aerial Imagery Acquired To Monitor The Distribution And Abundance Of Submerged Aquatic Vegetation In Chesapeake Bay And Coastal Bays, Robert J. Orth, David J. Wilcox, Jennifer R. Whiting, Anna K. Kenne, Erica R. Smith

Data

Multispectral aerial imagery acquired in 2017 to monitor the distribution and abundance of submerged aquatic vegetation in Chesapeake Bay and coastal bays


Section: 01 Line Frame: 06, 27 August 2017: Aerial Imagery Acquired To Monitor The Distribution And Abundance Of Submerged Aquatic Vegetation In Chesapeake Bay And Coastal Bays, Robert J. Orth, David J. Wilcox, Jennifer R. Whiting, Anna K. Kenne, Erica R. Smith Jun 2018

Section: 01 Line Frame: 06, 27 August 2017: Aerial Imagery Acquired To Monitor The Distribution And Abundance Of Submerged Aquatic Vegetation In Chesapeake Bay And Coastal Bays, Robert J. Orth, David J. Wilcox, Jennifer R. Whiting, Anna K. Kenne, Erica R. Smith

Data

Multispectral aerial imagery acquired in 2017 to monitor the distribution and abundance of submerged aquatic vegetation in Chesapeake Bay and coastal bays


Associated Dataset: The Competing Impacts Of Climate Change And Nutrient Reductions On Dissolved Oxygen In Chesapeake Bay, Isaac D. Irby, Marjorie A.M. Friedrichs Apr 2018

Associated Dataset: The Competing Impacts Of Climate Change And Nutrient Reductions On Dissolved Oxygen In Chesapeake Bay, Isaac D. Irby, Marjorie A.M. Friedrichs

Data

This research uses an estuarine-watershed hydrodynamic–biogeochemical modeling system along with projected mid-21st-century changes in temperature, freshwater flow, and sea level rise to explore the impact climate change may have on future Chesapeake Bay dissolved-oxygen (DO) concentrations and the potential success of nutrient reductions in attaining mandated estuarine water quality improvements.


Shoreline Hardening Affects Nekton Biomass, Size Structure,And Taxonomic Diversity In Nearshore Waters, With Responses Mediated By Functional Species Groups, Ms Kornis, Donna Marie Bilkovic, La Davias, S Giordano, Dl Brietburg Jan 2018

Shoreline Hardening Affects Nekton Biomass, Size Structure,And Taxonomic Diversity In Nearshore Waters, With Responses Mediated By Functional Species Groups, Ms Kornis, Donna Marie Bilkovic, La Davias, S Giordano, Dl Brietburg

VIMS Articles

Coastal shoreline hardening is intensifying due to human population growth and sea level rise. Prior studies have emphasized shoreline-hardening effects on faunal abundance and diversity; few have examined effects on faunal biomass and size structure or described effects specific to different functional groups. We evaluated the biomass and size structure of mobile fish and crustacean assemblages within two nearshore zones (waters extending 3 and 16 m from shore) adjacent to natural (native wetland; beach) and hardened (bulkhead; riprap) shorelines. Within 3 m from shore, the total fish/crustacean biomass was greatest at hardened shorelines, driven by greater water depth that facilitated …


Marsh Persistence Under Sea-Level Rise Is Controlled By Multiple, Geologically Variable Stressors, Molly Mitchell, Julie Herman, Donna M. Bilkovic, Carl Hershner Nov 2017

Marsh Persistence Under Sea-Level Rise Is Controlled By Multiple, Geologically Variable Stressors, Molly Mitchell, Julie Herman, Donna M. Bilkovic, Carl Hershner

VIMS Articles

Introduction: Marshes contribute to habitat and water quality in estuaries and coastal bays. Their importance to continued ecosystem functioning has led to concerns about their persistence.

Outcomes: Concurrent with sea-level rise, marshes are eroding and appear to be disappearing through ponding in their interior; in addition, in many places, they are being replaced with shoreline stabilization structures. We examined the changes in marsh extent over the past 40 years within a subestuary of Chesapeake Bay, the largest estuary in the United States, to better understand the effects of sea-level rise and human pressure on marsh coverage.


Tracking Decadal Changes In Striped Bass Recruitment: A Calibration Study Of Seine Surveys In Chesapeake Bay, Mary C. Fabrizio, Troy D. Tuckey, Olivia M. Philips, Brian K. Gallagher Mar 2017

Tracking Decadal Changes In Striped Bass Recruitment: A Calibration Study Of Seine Surveys In Chesapeake Bay, Mary C. Fabrizio, Troy D. Tuckey, Olivia M. Philips, Brian K. Gallagher

Reports

In this study we estimated calibration factors necessary to maintain the long‐term integrity of the juvenile striped bass surveys in the Chesapeake Bay region. These surveys provide annual indices of recruitment (estimated as juvenile fish abundance in summer) and are used by fisheries managers in Virginia and Maryland to inform adjustments of annual harvest limits for striped bass from the commercial and recreational fisheries in Chesapeake Bay. During the multi‐decadal history of the survey, a potentially influential change occurred: VIMS deployed a net (the VA net) with a mesh material that differed from the standard net that MD DNR continued …


Review Of Boat Wake Wave Impacts On Shoreline Erosion And Potential Solutions For The Chesapeake Bay, Donna M. Bilkovic, Molly Mitchell, Jenny Davis, Elizabeth Andrews, Angela King, Pamela Mason, Julie Herman, Navid Tahvildari, Jana Davis Jan 2017

Review Of Boat Wake Wave Impacts On Shoreline Erosion And Potential Solutions For The Chesapeake Bay, Donna M. Bilkovic, Molly Mitchell, Jenny Davis, Elizabeth Andrews, Angela King, Pamela Mason, Julie Herman, Navid Tahvildari, Jana Davis

Reports

No abstract provided.


Prince George County Shoreline Management Plan, C. Scott Hardaway Jr., Donna A. Milligan, Christine A. Wilcox, Marcia Berman, Tamia Rudnicky, Karinna Nunez, Sharon A. Killeen Nov 2016

Prince George County Shoreline Management Plan, C. Scott Hardaway Jr., Donna A. Milligan, Christine A. Wilcox, Marcia Berman, Tamia Rudnicky, Karinna Nunez, Sharon A. Killeen

Reports

Much of Prince George County’s shoreline is suitable for a “Living Shoreline” approach to shoreline management. The Commonwealth of Virginia has adopted policy stating that Living Shorelines are the preferred alternative for erosion control along tidal waters in Virginia (http://leg1.state.va.us/cgi‐bin/legp504.exe?111+ful+CHAP0885+pdf). The policy defines a Living Shoreline as …”a shoreline management practice that provides erosion control and water quality benefits; protects, restores or enhances natural shoreline habitat; and maintains coastal processes through the strategic placement of plants, stone, sand fill, and other structural and organic materials.” The key to effective implementation of this policy at the local level is understanding what …


Gloucester County Shoreline Management Plan, C. Scott Hardaway Jr., Donna A. Milligan, Christine A. Wilcox, Marcia Berman, Tamia Rudnicky, Karinna Nunez, Sharon A. Killeen Oct 2016

Gloucester County Shoreline Management Plan, C. Scott Hardaway Jr., Donna A. Milligan, Christine A. Wilcox, Marcia Berman, Tamia Rudnicky, Karinna Nunez, Sharon A. Killeen

Reports

With approximately 85 percent of the Chesapeake Bay shoreline privately owned, a critical need existsto increase awareness of erosion potential and the choices available for shore stabilization that maintainsecosystem services at the land-water interface. The National Academy of Science published a report thatspotlights the need to develop a shoreline management framework (NRC, 2007). It suggests that improvingawareness of the choices available for erosion control, considering cumulative consequences of erosionmitigation approaches, and improving shoreline management planning are key elements to minimizingadverse environmental impacts associated with mitigating shore erosion.
Actions taken by waterfront property owners to stabilize the shoreline can affect the …


Shoreline Evolution: City Of Norfolk, Virginia Chesapeake Bay, Elizabeth And Lafayette River Shorelines, Donna A. Milligan, Christine Wilcox, C. Scott Hardaway Jr. Sep 2016

Shoreline Evolution: City Of Norfolk, Virginia Chesapeake Bay, Elizabeth And Lafayette River Shorelines, Donna A. Milligan, Christine Wilcox, C. Scott Hardaway Jr.

Reports

City of Norfolk is situated along the Chesapeake Bay, Elizabeth and Lafayette Rivers (Figure 1). Because the City’s shoreline is continually changing, determining where the shoreline was in the past, how far and how fast it is moving, and what factors drive shoreline change will help define where the shoreline will be going in the future. These rates and patterns of shore change along Chesapeake Bay’s estuarine shores will differ through time as winds, waves, tides and currents shape and modify coastlines by eroding, transporting and depositing sediments. The purpose of this report is to document how the shore zone …


Shoreline Evolution: City Of Chesapeake, Virginia Elizabeth River Shorelines Data Summary Report, Donna A. Milligan, Christine Wilcox, C. Scott Hardaway Jr. Aug 2016

Shoreline Evolution: City Of Chesapeake, Virginia Elizabeth River Shorelines Data Summary Report, Donna A. Milligan, Christine Wilcox, C. Scott Hardaway Jr.

Reports

City of Chesapeake is situated between the Cities of Norfolk and Portsmouth along several branches of the Elizabeth River (Figure 1). Because the City's shoreline is continually changing, determining where the shoreline was in the past, how far and how fast it is moving, and what factors drive shoreline change will help define where the shoreline will be going in the future. These rates and patterns of shore change along Chesapeake Bay’s estuarine shores will differ through time as winds, waves, tides and currents shape and modify coastlines by eroding, transporting and depositing sediments.

The purpose of this report is …


The Dilemma Of Derelict Gear: Datasets, Andrew M. Scheld, Donna M. Bilkovic, Kirk J. Havens Jan 2016

The Dilemma Of Derelict Gear: Datasets, Andrew M. Scheld, Donna M. Bilkovic, Kirk J. Havens

Data

No abstract provided.


Stafford County Shoreline Management Plan, C. Scott Hardaway Jr., Donna A. Milligan, Christine A. Wilcox, Marcia Berman, Tamia Rudnicky, Karinna Nunez, Sharon Kileen Nov 2015

Stafford County Shoreline Management Plan, C. Scott Hardaway Jr., Donna A. Milligan, Christine A. Wilcox, Marcia Berman, Tamia Rudnicky, Karinna Nunez, Sharon Kileen

Reports

With approximately 85 percent of the Chesapeake Bay shoreline privately owned, a critical need exists to increase awareness of erosion potential and the choices available for shore stabilization that maintains ecosystem services at the land-water interface. The National Academy of Science published a report that spotlights the need to develop a shoreline management framework (NRC, 2007). It suggests that improving awareness of the choices available for erosion control, considering cumulative consequences of erosion mitigation approaches, and improving shoreline management planning are key elements to minimizing adverse environmental impacts associated with mitigating shore erosion. Actions taken by waterfront property owners to …


Re-Emergence Of The Harmful Algal Bloom Species Alexandrium Monilatum In The Chesapeake Bay: Assessing Bloom Dynamics And Potential Health Impacts, Sarah K.D. Pease, Kimberly S. Reece, Wolfgang K. Vogelbein Oct 2015

Re-Emergence Of The Harmful Algal Bloom Species Alexandrium Monilatum In The Chesapeake Bay: Assessing Bloom Dynamics And Potential Health Impacts, Sarah K.D. Pease, Kimberly S. Reece, Wolfgang K. Vogelbein

Presentations

Effective management of harmful algal blooms (HABs) within a region requires an understanding of species-specific HAB spatial and temporal distributions, bloom dynamics, as well as potential health impacts. In 2007, the southern Chesapeake Bay witnessed its first blooms of the HAB species Alexandrium monilatum. Since then, A. monilatum has bloomed in the region almost annually. A. monilatum produces the toxin ‘goniodomin A’ and is suspected in local mass mortalities of oyster larvae (Crassostrea virginica) grown for aquaculture and restoration projects. Representatives from Virginia’s multimillion dollar oyster aquaculture industry recently expressed great concern over A. monilatum impacts to their businesses; field …


Shoreline Evolution: Stafford County, Virginia Potomac River And Rappahannock River Shorelines, Donna A. Milligan, Christine A. Wilcox, C. Scott Hardaway Jr. Sep 2015

Shoreline Evolution: Stafford County, Virginia Potomac River And Rappahannock River Shorelines, Donna A. Milligan, Christine A. Wilcox, C. Scott Hardaway Jr.

Reports

Stafford County is situated along the upper reaches of the Potomac and Rappahannock Rivers. Because the County’s shoreline is continually changing, determining where the shoreline was in the past, how far and how fast it is moving, and what factors drive shoreline change will help define where the shoreline will be going in the future. These rates and patterns of shore change along Chesapeake Bay’s estuarine shores will differ through time as winds, waves, tides and currents shape and modify coastlines by eroding, transporting and depositing sediments. The purpose of this report is to document how the shore zone of …


Estimating Relative Abundance Of Young-Of-Year American Eel, Anguilla Rostrata, In The Virginia Tributaries Of Chesapeake Bay (Spring 2014), Troy D. Tuckey, Mary C. Fabrizio Mar 2015

Estimating Relative Abundance Of Young-Of-Year American Eel, Anguilla Rostrata, In The Virginia Tributaries Of Chesapeake Bay (Spring 2014), Troy D. Tuckey, Mary C. Fabrizio

Reports

The Atlantic States Marine Fisheries Commission (ASMFC) adopted the Interstate Fishery Management Plan (FMP) for the American Eel in November 1999. The FMP calls for efforts to collect American Eel data through both fishery-dependent and fishery-independent studies in coastal states. Consequently, member jurisdictions agreed to implement an annual survey for young-of-year (YOY) American Eels. The survey is intended to “…characterize trends in annual recruitment of the YOY eels over time [to produce a] qualitative appraisal of the annual recruitment of American Eel to the 4 U.S. Atlantic Coast” (ASMFC 2000). The development of these surveys began in 2000 with full …


Shoreline Evolution: Northumberland County, Virginia Chesapeake Bay, Potomac River, And Great Wicomico River Shorelines, Donna A. Milligan, Christine A. Wilcox, C. Scott Hardaway Jr. Aug 2014

Shoreline Evolution: Northumberland County, Virginia Chesapeake Bay, Potomac River, And Great Wicomico River Shorelines, Donna A. Milligan, Christine A. Wilcox, C. Scott Hardaway Jr.

Reports

Northumberland County is situated at the confluence of the Potomac River and Chesapeake Bay (Figure 1). Because the County’s shoreline is continually changing, determining where the shoreline was in the past, how far and how fast it is moving, and what factors drive shoreline change will help define where the shoreline will be going in the future. These rates and patterns of shore change along Chesapeake Bay’s estuarine shores will differ through time as winds, waves, tides and currents shape and modify coastlines by eroding, transporting and depositing sediments. The purpose of this report is to document how the shorezone …


Salt Ponds Shore Zone Modeling For Breakwater Placement: Summary Report, Donna A. Milligan, C. Scott Hardaway Jr. May 2014

Salt Ponds Shore Zone Modeling For Breakwater Placement: Summary Report, Donna A. Milligan, C. Scott Hardaway Jr.

Reports

The City of Hampton Beachfront and Storm Protection Management Plan (Waterway Surveys, VIMS, and URS, 2011) provides a conceptual plan for the placement of structures along Hampton’s shoreline (Figure 1). The Shoreline Studies Program (SSP) at the Virginia Institute of Marine Science (VIMS) provided the original shoreline modeling used for this plan in 1999. The modeling was used to provide guidance on structure placement for management of the entire beach fronting shoreline. The City has built three of the structures in the Plan along the public beach at Buckroeand presently is planning to design and construct the recommended breakwater in …