Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Environmental Sciences

Portland State University

Environmental Science and Management Faculty Publications and Presentations

Forests -- Climatic factors

Publication Year

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Widespread Severe Wildfires Under Climate Change Lead To Increased Forest Homogeneity In Dry Mixed-Conifer Forests, Brooke Alyce Cassell, Robert M. Scheller, Melissa S. Lucash, Matthew Hurteau, E. Louise Loudermilk Nov 2019

Widespread Severe Wildfires Under Climate Change Lead To Increased Forest Homogeneity In Dry Mixed-Conifer Forests, Brooke Alyce Cassell, Robert M. Scheller, Melissa S. Lucash, Matthew Hurteau, E. Louise Loudermilk

Environmental Science and Management Faculty Publications and Presentations

Climate warming in the western United States is causing changes to the wildfire regime in mixed-conifer forests. Rising temperatures, longer fire seasons, increased drought, as well as fire suppression and changes in land use, have led to greater and more severe wildfire activity, all contributing to altered forest composition over the past century. To understand future interactions among climate, wildfire, and vegetation in a fire-prone landscape in the southern Blue Mountains of central Oregon, we used a spatially explicit forest landscape model, LANDIS-II, to simulate forest and fire dynamics under current management practices and two projected climate scenarios. The results …


Climate-Suitable Planting As A Strategy For Maintaining Forest Productivity And Functional Diversity, Matthew Joshua Duveneck, Robert M. Scheller Sep 2015

Climate-Suitable Planting As A Strategy For Maintaining Forest Productivity And Functional Diversity, Matthew Joshua Duveneck, Robert M. Scheller

Environmental Science and Management Faculty Publications and Presentations

Within the time frame of the longevity of tree species, climate change will change faster than the ability of natural tree migration. Migration lags may result in reduced productivity and reduced diversity in forests under current management and climate change. We evaluated the efficacy of planting climate-suitable tree species (CSP), those tree species with current or historic distributions immediately south of a focal landscape, to maintain or increase aboveground biomass, productivity, and species and functional diversity. We modeled forest change with the LANDIS-II forest simulation model for 100 years (2000–2100) at a 2-ha cell resolution and five-year time steps within …


Climate Change Effects On Northern Great Lake (Usa) Forests: A Case For Preserving Diversity, Matthew Joshua Duveneck, Robert M. Scheller, Mark A. White, Stephen D. Handler, Catherine Ravenscroft Feb 2014

Climate Change Effects On Northern Great Lake (Usa) Forests: A Case For Preserving Diversity, Matthew Joshua Duveneck, Robert M. Scheller, Mark A. White, Stephen D. Handler, Catherine Ravenscroft

Environmental Science and Management Faculty Publications and Presentations

Under business as usual (BAU) management, stresses posed by climate change may exceed the ability of Great Lake forests to adapt. Temperature and precipitation projections in the Great Lakes region are expected to change forest tree species composition and productivity. It is unknown how a change in productivity and/or tree species diversity due to climate change will affect the relationship between diversity and productivity. We assessed how forests in two landscapes (i.e., northern lower Michigan and northeastern Minnesota, USA) would respond to climate change and explored the diversityproductivity relationship under climate change. In addition, we explored how tree species diversity …


Impacts Of Fire And Climate Change On Long-Term Nitrogen Availability And Forest Productivity In The New Jersey Pine Barrens, Melissa S. Lucash, Robert M. Scheller, Alec M. Kretchun, Kenneth L. Clark, John Hom Jan 2014

Impacts Of Fire And Climate Change On Long-Term Nitrogen Availability And Forest Productivity In The New Jersey Pine Barrens, Melissa S. Lucash, Robert M. Scheller, Alec M. Kretchun, Kenneth L. Clark, John Hom

Environmental Science and Management Faculty Publications and Presentations

Increased wildfires and temperatures due to climate change are expected to have profound effects on forest productivity and nitrogen (N) cycling. Forecasts about how wildfire and climate change will affect forests seldom consider N availability, which may limit forest response to climate change, particularly in fire-prone landscapes. The overall objective of this study was to examine how wildfire and climate change affect long-term mineral N availability in a fire-prone landscape. We employed a commonly used landscape simulation model (LANDIS-II) in the New Jersey Pine Barrens, a landscape characterized by frequent small fires and fire-resilient vegetation. We found that fire had …


Divergent Carbon Dynamics Under Climate Change In Forests With Diverse Soils, Tree Species, And Land Use Histories, Robert M. Scheller, Alec M. Kretchun, Steve Van Tuyl, Kenneth L. Clark, Melissa S. Lucash, John Hom Nov 2012

Divergent Carbon Dynamics Under Climate Change In Forests With Diverse Soils, Tree Species, And Land Use Histories, Robert M. Scheller, Alec M. Kretchun, Steve Van Tuyl, Kenneth L. Clark, Melissa S. Lucash, John Hom

Environmental Science and Management Faculty Publications and Presentations

Accounting for both climate change and natural disturbances—which typically result in greenhouse gas emissions—is necessary to begin managing forest carbon sequestration. Gaining a complete understanding of forest carbon dynamics is, however, challenging in systems characterized by historic over-utilization, diverse soils and tree species, and frequent disturbance. In order to elucidate the cascading effects of potential climate change on such systems, we projected forest carbon dynamics, including soil carbon changes, and shifts in tree species composition as a consequence of wildfires and climate change in the New Jersey pine barrens (NJPB) over the next 100 years. To do so, we used …