Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Quantifying Surface Severity Of The 2014 And 2015 Fires In The Great Slave Lake Area Of Canada, Nancy H. F. French, Jeremy Graham, Ellen Whitman, Laura Bourgeau-Chavez Oct 2020

Quantifying Surface Severity Of The 2014 And 2015 Fires In The Great Slave Lake Area Of Canada, Nancy H. F. French, Jeremy Graham, Ellen Whitman, Laura Bourgeau-Chavez

Michigan Tech Publications

The focus of this paper was the development of surface organic layer severity maps for the 2014 and 2015 fires in the Great Slave Lake area of the Northwest Territories and Alberta, Canada, using multiple linear regression models generated from pairing field data with Landsat 8 data. Field severity data were collected at 90 sites across the region, together with other site metrics, in order to develop a mapping approach for surface severity, an important metric for assessing carbon loss from fire. The approach utilised a combination of remote sensing indices to build a predictive model of severity that was …


Earth Observation And Sustainable Development Goals, Ramesh P. Singh Jun 2020

Earth Observation And Sustainable Development Goals, Ramesh P. Singh

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

"Planet Earth is a dynamic body, which is home to 7.8 billion people, and strong interactions exist between the human population and the Earth’s different components (land, ocean, biosphere, cryosphere and atmosphere). The impacts of such interactions are observed from the day-to-day changes in weather, solar radiation, cloudy conditions, poor visibility, rainfall and frequency of natural hazards around the globe. The dynamic nature of the Earth is evident at the ocean coast through the ocean waves, the nature of these waves varies from day-to-day and also morning to evening. For example, the heights of waves can now be predicted through …


Remote Sensing Monitoring Of Vegetation Dynamic Changes After Fire In The Greater Hinggan Mountain Area: The Algorithm And Application For Eliminating Phenological Impacts, Zhibin Huang, Chunxiang Cao, Wei Chen, Min Xu, Yongfeng Dang, Ramesh P. Singh, Barjeece Bashir, Bo Xie, Xiaojuan Lin Jan 2020

Remote Sensing Monitoring Of Vegetation Dynamic Changes After Fire In The Greater Hinggan Mountain Area: The Algorithm And Application For Eliminating Phenological Impacts, Zhibin Huang, Chunxiang Cao, Wei Chen, Min Xu, Yongfeng Dang, Ramesh P. Singh, Barjeece Bashir, Bo Xie, Xiaojuan Lin

Mathematics, Physics, and Computer Science Faculty Articles and Research

Fires are frequent in boreal forests affecting forest areas. The detection of forest disturbances and the monitoring of forest restoration are critical for forest management. Vegetation phenology information in remote sensing images may interfere with the monitoring of vegetation restoration, but little research has been done on this issue. Remote sensing and the geographic information system (GIS) have emerged as important tools in providing valuable information about vegetation phenology. Based on the MODIS and Landsat time-series images acquired from 2000 to 2018, this study uses the spatio-temporal data fusion method to construct reflectance images of vegetation with a relatively consistent …