Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Physical Sciences and Mathematics

Fate Of Metals In Presence Of Minerals And Mineral-Organic Assemblages, Neha Sharma Aug 2022

Fate Of Metals In Presence Of Minerals And Mineral-Organic Assemblages, Neha Sharma

McKelvey School of Engineering Theses & Dissertations

Metals can enter aquatic systems from natural and anthropogenic processes associated with weathering, sediment re-suspension, industrial activities, and atmospheric deposition. Metals pose health and environmental risks at high concentrations due to their potential toxicity and bioaccumulation, but many trace metals also serve as essential micronutrients for biogeochemical processes in natural aquatic systems. Biogeochemical processes such as methanogenesis, denitrification, and mercury methylation require transition metals such as nickel (Ni), cobalt (Co), copper (Cu), and molybdenum (Mo) for completion. These biogeochemical processes can be substantial contributors of greenhouse gases, such as methane (CH4) and nitrous oxide (N2O), into the atmosphere. The behavior, …


Nanoscale Interfacial Control Of Ion Behaviors And Caco3 Formation In Environmental Systems, Yaguang Zhu Aug 2022

Nanoscale Interfacial Control Of Ion Behaviors And Caco3 Formation In Environmental Systems, Yaguang Zhu

McKelvey School of Engineering Theses & Dissertations

Interfaces in environmental systems can change the distribution of pollutants and nutrients, determine the fate and transport of nanoparticles, and affect the efficiency of engineering projects. Complex interactions, including electrostatic interactions, Van der Waals interactions, chemical interactions, and ion-surface specific interactions, can all contribute to different ion, ion-pair, and nanoparticle formations near interfaces. Although environmental interfaces play critical roles, only a limited number of studies have considered the nanoscale picture of how they control ions and nanoparticles. Thus, this dissertation addresses three research questions: (1) How does sulfate chemically interact with calcium carbonate (CaCO3) during its heterogeneous formation on quartz …


Photochemical Formation Mechanisms And Applications Of Mn Oxide Nanomaterials, Zhenwei Gao Aug 2022

Photochemical Formation Mechanisms And Applications Of Mn Oxide Nanomaterials, Zhenwei Gao

McKelvey School of Engineering Theses & Dissertations

Manganese (Mn) oxides are ubiquitous in aquatic and terrestrial environments, and the rich redox chemistry of manganese is of interest in engineered systems, such as batteries and water oxidation catalysts. Mn oxides have large surface areas and are highly active in adsorption and redox reactions. Our research group recently reported photochemically-assisted abiotic inorganic oxidation of Mn2+(aq) to δ-MnO2 nanosheets in the presence of nitrate and without a microorganism, demonstrating that abiotic Mn oxidation processes are not negligible. My doctoral work focuses on investigating the effects of various aquatic chemistry parameters, including reactive oxygen species (ROS), peroxyl radical (ROO•), reactive halogen …


Interaction Of Aqueous U(Vi) With Goethite, Montmorillonite, And Uo2(S), Anshuman Satpathy May 2021

Interaction Of Aqueous U(Vi) With Goethite, Montmorillonite, And Uo2(S), Anshuman Satpathy

McKelvey School of Engineering Theses & Dissertations

Uranium contamination in subsurface environments is a matter of great concern throughout the world. Fate and transport of uranium in the subsurface can be controlled by U(VI) adsorption and reduction onto common iron (oxy)hydroxides and clay minerals. Aqueous U(VI) can also exchange uranium atoms with solids comprised of uranium which can potentially lead to changes in the morphology of the uranium-containing solids and affect their stability. First, the performance of multiple surface complexation models (SCMs) on adsorption of U(VI) onto goethite was analyzed for a broad range of input conditions. Individual models could fit the data for which they were …


Chemistry Of Nanoscale Solids And Organic Matter In Sustainable Water Management Systems, Xuanhao Wu May 2020

Chemistry Of Nanoscale Solids And Organic Matter In Sustainable Water Management Systems, Xuanhao Wu

McKelvey School of Engineering Theses & Dissertations

To alleviate global water scarcity and improve public health, engineered water treatment and management systems have been developed for purifying contaminated water and desalinating brackish or ocean water. These engineered systems provide substantial amounts of potable water and lessen environmental concerns about the release of contaminated water. Wastewater treatment plants (WWTPs), water desalination plants (WDPs), and managed aquifer recharge systems (MARs) are three representative sustainable water management (SWM) systems. But the operation of all three poses two fundamental questions: (1) What is the fate of nanoscale solids (e.g., engineered nanomaterials, naturally occurring nanoparticles) in SWM systems and how will their …


Development Of Novel Instrumentation And Methods To Investigate The Composition And Phase Partitioning Of Semivolatile And Intermediately Volatile Organic Compounds In Atmospheric Organic Aerosol, Claire Fortenberry May 2020

Development Of Novel Instrumentation And Methods To Investigate The Composition And Phase Partitioning Of Semivolatile And Intermediately Volatile Organic Compounds In Atmospheric Organic Aerosol, Claire Fortenberry

McKelvey School of Engineering Theses & Dissertations

Atmospheric particulate matter (PM) is ubiquitous in both indoor and outdoor air and is generally detrimental to human health. PM composed of particles with aerodynamic diameters less than 2.5 um (PM2.5) are related to adverse health outcomes including heart disease and respiratory disease. Fundamentally, particle physical properties such as size and hygroscopicity are dictated by chemical composition, which can be highly complex, particularly for organic aerosol (OA). In both outdoor and indoor air, OA is composed substantially of intermediately volatile and semivolatile organic compounds (I/SVOCs), which exist in both gas and particle phases under typical atmospheric conditions. The distribution of …


Contemporary Problems In Aerosol Aggregation And Gelation, Pai Liu Dec 2019

Contemporary Problems In Aerosol Aggregation And Gelation, Pai Liu

McKelvey School of Engineering Theses & Dissertations

Aggregation of nanoparticles in aerosols is a fundamental phenomenon with important implications to diverse fields ranging from material synthesis to pollutant control. The past few decades have witnessed extensive research on investigating the structure and growth mechanism of aerosol aggregates with sizes spanning across several orders of magnitude. This dissertation focuses on some contemporary problems that remain unaddressed in this topical area. Aerosol aggregates in sub-micron regimes, which are formed via the irreversible collision and aggregation of solid nanoparticle monomers, are fractal-like in their morphology. A mathematical description of this seemingly random structure dates to the seminal works by Forest …


Mechanisms Of Calcium Phosphate Mineralization On Biological Interfaces And Their Engineering Applications, Doyoon Kim Dec 2018

Mechanisms Of Calcium Phosphate Mineralization On Biological Interfaces And Their Engineering Applications, Doyoon Kim

McKelvey School of Engineering Theses & Dissertations

All living organisms utilize phosphorus (P) as an essential component of their cell membranes, DNA and RNA, and adenosine triphosphate. Bones, in addition to bearing loads, play an important role in balancing P levels in our bodies. In bones, a network of collagen templates and calcium phosphate (CaP) nanocrystals builds hierarchical levels, from nano- to macroscale. Within this architecture, the thermodynamic properties of CaP minerals are influential. Despite the importance of nucleation, growth, and crystallization in collagen structures for tissue development, little kinetic study of these processes has been conducted due to the limited in situ techniques for monitoring these …


Aluminosilicate Dissolution And Silicate Carbonation During Geologic Co2 Sequestration, Yujia Min Aug 2017

Aluminosilicate Dissolution And Silicate Carbonation During Geologic Co2 Sequestration, Yujia Min

McKelvey School of Engineering Theses & Dissertations

Geologic CO2 sequestration (GCS) is considered a promising method to reduce anthropogenic CO2 emission. Assessing the supercritical CO2 (scCO2)¬–gas or liquid phase water (g, l)–mineral interactions is critical to evaluating the viability of GCS processes. This work contributes to our understanding of geochemical reactions at CO2¬–water (g, l)–mineral interfaces, by investigating the dissolution of aluminosilicates in CO2-acidified water (l). Plagioclase and biotite were chosen as model minerals in reservoir rock and caprock, respectively. To elucidate the effects of brine chemistry, first, the influences of cations in brine including Na, Ca, and K, have been investigated. In addition to the cations, …


Sub 2 Nm Particle Characterization In Systems With Aerosol Formation And Growth, Yang Wang May 2017

Sub 2 Nm Particle Characterization In Systems With Aerosol Formation And Growth, Yang Wang

McKelvey School of Engineering Theses & Dissertations

Aerosol science and technology enable continual advances in material synthesis and atmospheric pollutant control. Among these advances, one important frontier is characterizing the initial stages of particle formation by real time measurement of particles below 2 nm in size. Sub 2 nm particles play important roles by acting as seeds for particle growth, ultimately determining the final properties of the generated particles. Tailoring nanoparticle properties requires a thorough understanding and precise control of the particle formation processes, which in turn requires characterizing nanoparticle formation from the initial stages. The knowledge on particle formation in early stages can also be applied …


The Effect Of Diffusive Transport On Mineral Carbonation In Geologic Carbon Sequestration, Wei Xiong May 2017

The Effect Of Diffusive Transport On Mineral Carbonation In Geologic Carbon Sequestration, Wei Xiong

McKelvey School of Engineering Theses & Dissertations

Geologic carbon sequestration (GCS) is an effective method to mitigate environmental problems due to excessive anthropogenic CO2 emissions. It involves injecting supercritical CO2 into deep geologic formations in which CO2 will ultimately be converted to solid carbonate minerals. Basalt is a promising host rock that is rich in the divalent cations Ca, Mg and Fe that are important for mineral trapping of CO2. Fractures and pores in basalt reservoirs provide substantial surface area for geochemical reactions during carbon sequestration. The transport in fractures and pores is controlled by diffusion. The coupling of diffusive transport and geochemical reactions leads to carbonate …


Nanostructured Thin Film Synthesis By Aerosol Chemical Vapor Deposition For Energy Storage Applications, Tandeep Singh Chadha Aug 2016

Nanostructured Thin Film Synthesis By Aerosol Chemical Vapor Deposition For Energy Storage Applications, Tandeep Singh Chadha

McKelvey School of Engineering Theses & Dissertations

Renewable energy sources offer a viable solution to the growing energy demand while mitigating concerns for greenhouse gas emissions and climate change. This has led to a tremendous momentum towards solar and wind-based energy harvesting technologies driving efficiencies higher and costs lower. However, the intermittent nature of these energy sources necessitates energy storage technologies, which remain the Achilles heel in meeting the renewable energy goals. This dissertation focusses on two approaches for addressing the needs of energy storage: first, targeting direct solar to fuel conversion via photoelectrochemical water-splitting and second, improving the performance of current rechargeable batteries by developing new …


Calcium Carbonate Formation In Energy-Related Subsurface Environments And Engineered Systems, Qingyun Li Aug 2016

Calcium Carbonate Formation In Energy-Related Subsurface Environments And Engineered Systems, Qingyun Li

McKelvey School of Engineering Theses & Dissertations

Geologic CO2 sequestration (GCS) in subsurface saline aquifers is a promising strategy to mitigate climate change caused by increasing anthropogenic CO2 emissions from energy production. At GCS sites, interactions between fluids and geomedia are important because they can affect CO2 trapping efficiency and the safety of CO2 storage. These interactions include the dissolution and precipitation of minerals. One of the most important minerals is calcium carbonate, because it can permanently trap CO2.

In this work, Portland cement was used as a model geomedium to investigate the chemical reactions, mechanical alterations, transport of reactive fluids, and the interplay of all these …


Modeling, Simulation, And Analysis Of Lithium-Ion Batteries For Grid-Scale Applications, Matthew Thomas Lawder May 2016

Modeling, Simulation, And Analysis Of Lithium-Ion Batteries For Grid-Scale Applications, Matthew Thomas Lawder

McKelvey School of Engineering Theses & Dissertations

Lithium-ion batteries have become universally present in daily life, being used across a wide range of portable consumer electronics. These batteries are advantageous compared to other forms of energy storage due to their high energy density and long cycle life. These characteristics make lithium-ion batteries advantageous for many new and developing applications that require large scale energy storage such as electric vehicles and the utility grid. Typical uses for lithium-ion batteries require consistent cycling patterns that are predictable and easy to approximate across all uses, but new large scale applications will have much more dynamic demands. The cycling patterns for …


Environmental Fullerene Chemistry: Elucidating Critical Reaction Pathways And Resulting Products In The Aqueous Phase, Jiewei Wu May 2016

Environmental Fullerene Chemistry: Elucidating Critical Reaction Pathways And Resulting Products In The Aqueous Phase, Jiewei Wu

McKelvey School of Engineering Theses & Dissertations

As the production of fullerenes and fullerene-based materials approaches industrial scale, there are increasing interests/concerns regarding their (potential) environmental impact(s) upon release. To date, a number of critical, aqueous-based fullerene transformation pathways under environmentally relevant conditions remain poorly understood. Comprehensive, fundamental, and quantitative understanding of the potential (major) reaction pathways and resulting products of fullerene materials, particularly in aquatic systems, is now crucial for their accurate fate, transport, life cycle, risk assessment(s), and thus ultimate material sustainability.

Herein, this dissertation is focused on identifying and elucidating aqueous transformation pathways of fullerene materials, focused on C60 as a model fullerene, under …