Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 44

Full-Text Articles in Physical Sciences and Mathematics

Toward A Coordinated Understanding Of Hydro-Biogeochemical Root Functions In Tropical Forests For Application In Vegetation Models, Daniela F. Cusack, Bradley Christoffersen, Chris M. Smith-Martin, Kelly M. Andersen, Amanda L. Cordeiro, Katrin Fleischer, S. Joseph Wright, Nathaly R. Guerrero-Ramírez, Laynara F. Lugli, Lindsay A. Mcculloch, Mareli Sanchez-Julia, Sarah A. Batterman, Caroline Dallstream, Claire Fortunel, Laura Toro, Lucia Fuchslueger, Michelle Y. Wong, Daniela Yaffar, Joshua B. Fisher, Marie Arnaud, Lee H. Dietterich, Shalom D. Addo-Danso, Oscar J. Valverde-Barrantes, Monique Weemstra, Jing Cheng Ng, Richard J. Norby Feb 2024

Toward A Coordinated Understanding Of Hydro-Biogeochemical Root Functions In Tropical Forests For Application In Vegetation Models, Daniela F. Cusack, Bradley Christoffersen, Chris M. Smith-Martin, Kelly M. Andersen, Amanda L. Cordeiro, Katrin Fleischer, S. Joseph Wright, Nathaly R. Guerrero-Ramírez, Laynara F. Lugli, Lindsay A. Mcculloch, Mareli Sanchez-Julia, Sarah A. Batterman, Caroline Dallstream, Claire Fortunel, Laura Toro, Lucia Fuchslueger, Michelle Y. Wong, Daniela Yaffar, Joshua B. Fisher, Marie Arnaud, Lee H. Dietterich, Shalom D. Addo-Danso, Oscar J. Valverde-Barrantes, Monique Weemstra, Jing Cheng Ng, Richard J. Norby

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Tropical forest root characteristics and resource acquisition strategies are underrepresented in vegetation and global models, hampering the prediction of forest–climate feedbacks for these carbon-rich ecosystems. Lowland tropical forests often have globally unique combinations of high taxonomic and functional biodiversity, rainfall seasonality, and strongly weathered infertile soils, giving rise to distinct patterns in root traits and functions compared with higher latitude ecosystems. We provide a roadmap for integrating recent advances in our understanding of tropical forest belowground function into vegetation models, focusing on water and nutrient acquisition. We offer comparisons of recent advances in empirical and model understanding of root characteristics …


Sulfate Enhances The Adsorption And Retention Of Cu(Ii) And Zn(Ii) To Dispersed And Aggregated Iron Oxyhydroxide Nanoparticles, Emma M. Kocik, Abigail Kim, Miranda L. Aiken, Lauren Smith, Christopher S. Kim Feb 2024

Sulfate Enhances The Adsorption And Retention Of Cu(Ii) And Zn(Ii) To Dispersed And Aggregated Iron Oxyhydroxide Nanoparticles, Emma M. Kocik, Abigail Kim, Miranda L. Aiken, Lauren Smith, Christopher S. Kim

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

The adsorption and retention of metal ions to nanoscale iron (hydr)oxides in aqueous systems is significantly influenced by prevailing environmental conditions. We examined the influence of sulfate, the second most common anion in seawater that is present in many other natural aquatic systems, on the adsorption and retention of Cu(II) and Zn(II) to synthetic iron oxyhydroxide nanoparticles (NPs) and their aggregates. Batch uptake experiments with monodisperse NPs and NPs aggregated by changes in pH, ionic strength, and temperature were conducted over sulfate concentrations ranging from 0 to 0.30 M. The introduction of 0.03 M sulfate significantly increased the initial adsorption …


Permafrost Carbon: Progress On Understanding Stocks And Fluxes Across Northern Terrestrial Ecosystems, Claire C. Treat, Anna-Maria Virkkala, Eleanor Burke, Lori Bruhwiler, Abhishek Chatterjee, Joshua B. Fisher, Josh Hashemi, Frans-Jan W. Parmentier, Brendan M. Rogers, Sebastian Westermann, Jennifer D. Watts, Elena Blanc-Betes, Matthias Fuchs, Stefan Kruse, Avni Malhotra, Kimberley Miner, Jens Strauss, Amanda Armstrong, Howard E. Epstein, Bradley Gay, Mathias Goeckede, Aram Kalhori, Dan Kou, Charles E. Miller, Susan M. Natali, Youmi Oh, Sarah Shakil, Oliver Sonnentag, Ruth K. Varner, Scott Zolkos, Edward A.G. Schuur, Gustaf Hugelius Jan 2024

Permafrost Carbon: Progress On Understanding Stocks And Fluxes Across Northern Terrestrial Ecosystems, Claire C. Treat, Anna-Maria Virkkala, Eleanor Burke, Lori Bruhwiler, Abhishek Chatterjee, Joshua B. Fisher, Josh Hashemi, Frans-Jan W. Parmentier, Brendan M. Rogers, Sebastian Westermann, Jennifer D. Watts, Elena Blanc-Betes, Matthias Fuchs, Stefan Kruse, Avni Malhotra, Kimberley Miner, Jens Strauss, Amanda Armstrong, Howard E. Epstein, Bradley Gay, Mathias Goeckede, Aram Kalhori, Dan Kou, Charles E. Miller, Susan M. Natali, Youmi Oh, Sarah Shakil, Oliver Sonnentag, Ruth K. Varner, Scott Zolkos, Edward A.G. Schuur, Gustaf Hugelius

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Significant progress in permafrost carbon science made over the past decades include the identification of vast permafrost carbon stocks, the development of new pan-Arctic permafrost maps, an increase in terrestrial measurement sites for CO2 and methane fluxes, and important factors affecting carbon cycling, including vegetation changes, periods of soil freezing and thawing, wildfire, and other disturbance events. Process-based modeling studies now include key elements of permafrost carbon cycling and advances in statistical modeling and inverse modeling enhance understanding of permafrost region C budgets. By combining existing data syntheses and model outputs, the permafrost region is likely a wetland methane …


Inhibition Of Chromium(Iii) Oxidation Through Manganese(Iv) Oxide Passivation And Iron(Ii) Abiotic Reduction, Miranda L. Aiken, Macon J. Abernathy, Michael V. Schaefer, Ilkeun Lee, Samantha C. Ying Nov 2023

Inhibition Of Chromium(Iii) Oxidation Through Manganese(Iv) Oxide Passivation And Iron(Ii) Abiotic Reduction, Miranda L. Aiken, Macon J. Abernathy, Michael V. Schaefer, Ilkeun Lee, Samantha C. Ying

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Manganese (Mn) oxides are strong oxidants that are ubiquitous in soils and can oxidize redox-active metals, including chromium (Cr). In soil environments, trivalent chromium (Cr(III)) is a benign, immobile micronutrient, whereas the hexavalent Cr(VI) form is present as a highly mobile, toxic chromate oxyanion. Although many studies have characterized the capacity of Mn(III/IV) oxides to oxidize Cr(III) to toxic Cr(VI), the oxidative capacity of Mn oxides in the presence of potentially passivating soil constituents, specifically reduced soluble iron (Fe(II)aq), remains unresolved. We hypothesized that chemical processes at redox interfaces, such as diffusion-limited environments within soil aggregates, can lead to decreased …


Volcanic Diffuse Volatile Emissions Tracked By Plant Responses Detectable From Space, Robert R. Bogue, Peter M. J. Douglas, Joshua B. Fisher, John Stix Nov 2023

Volcanic Diffuse Volatile Emissions Tracked By Plant Responses Detectable From Space, Robert R. Bogue, Peter M. J. Douglas, Joshua B. Fisher, John Stix

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Volcanic volatile emissions provide information about volcanic unrest but are difficult to detect with satellites. Volcanic degassing affects plants by elevating local CO2 and H2O concentrations, which may increase photosynthesis. Satellites can detect plant health, or a reaction to photosynthesis, through a Normalized Difference Vegetation Index (NDVI). This can act as a potential proxy for detecting changes in volcanic volatile emissions from space. We tested this method by analyzing 185 Landsat 5 and 8 images of the Tern Lake thermal area (TLTA) in northeast Yellowstone caldera from 1984 to 2022. We compared the NDVI values of the thermal area with …


Symbiotic Ucyn-A Strains Co-Occurred With El Niño, Relaxed Upwelling, And Varied Eukaryotes Over 10 Years Off Southern California, Colette Fletcher-Hoppe, Yi-Chun Yeh, Yubin Raut, J. L. Weissman, Jed A. Fuhrman Jun 2023

Symbiotic Ucyn-A Strains Co-Occurred With El Niño, Relaxed Upwelling, And Varied Eukaryotes Over 10 Years Off Southern California, Colette Fletcher-Hoppe, Yi-Chun Yeh, Yubin Raut, J. L. Weissman, Jed A. Fuhrman

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Biological nitrogen fixation, the conversion of N2 gas into a bioavailable form, is vital to sustaining marine primary production. Studies have shifted beyond traditionally studied tropical diazotrophs. Candidatus Atelocyanobacterium thalassa (or UCYN-A) has emerged as a focal point due to its streamlined metabolism, intimate partnership with a haptophyte host, and broad distribution. Here, we explore the environmental parameters that govern UCYN-A’s presence at the San Pedro Ocean Time-series (SPOT), its host specificity, and statistically significant interactions with non-host eukaryotes from 2008-2018. 16S and 18S rRNA gene sequences were amplified by “universal primers” from monthly samples and resolved into Amplicon …


Updating The Dual C And O Isotope—Gas-Exchange Model: A Concept To Understand Plant Responses To The Environment And Its Implications For Tree Rings, Rolf T. W. Siegwolf, Marco M. Lehmann, Gregory R. Goldsmith, Olga V. Churakova (Sidorova), Cathleen Mirande-Ney, Galina Timoveeva, Rosmarie B. Weigt, Matthias Saurer Jun 2023

Updating The Dual C And O Isotope—Gas-Exchange Model: A Concept To Understand Plant Responses To The Environment And Its Implications For Tree Rings, Rolf T. W. Siegwolf, Marco M. Lehmann, Gregory R. Goldsmith, Olga V. Churakova (Sidorova), Cathleen Mirande-Ney, Galina Timoveeva, Rosmarie B. Weigt, Matthias Saurer

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

The combined study of carbon (C) and oxygen (O) isotopes in plant organic matter has emerged as a powerful tool for understanding plant functional responses to environmental change. The approach relies on established relationships between leaf gas exchange and isotopic fractionation to derive a series of model scenarios that can be used to infer changes in photosynthetic assimilation and stomatal conductance driven by changes in environmental parameters (CO2, water availability, air humidity, temperature, nutrients). We review the mechanistic basis for a conceptual model, in light of recently published research, and discuss where isotopic observations do not match our …


Small Community Water Systems Have The Highest Prevalence Of Mn In Drinking Water In California, Usa, Miranda Aiken, Samantha C. Ying May 2023

Small Community Water Systems Have The Highest Prevalence Of Mn In Drinking Water In California, Usa, Miranda Aiken, Samantha C. Ying

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Manganese (Mn) is currently regulated as a secondary contaminant in California, USA; however, recent revisions of the World Health Organization drinking water guidelines have increased regulatory attention of Mn in drinking water due to increasing reports of neurotoxic effects in infants and children. In this study, Mn concentrations reported to California’s Safe Drinking Water Information System were used to estimate the potentially exposed population within California based on system size. We estimate that between 2011 and 2021, over 525,000 users in areas with reported Mn data are potentially exposed to Mn concentrations exceeding the WHO health-based guideline (80 μg L …


Possible Overestimation Of Nitrogen Dioxide Outgassing During The Beirut 2020 Explosion, Ashraf Farahat, Nayla El-Kork, Ramesh P. Singh, Feng Jing Dec 2022

Possible Overestimation Of Nitrogen Dioxide Outgassing During The Beirut 2020 Explosion, Ashraf Farahat, Nayla El-Kork, Ramesh P. Singh, Feng Jing

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

On 4 August 2020, a strong explosion occurred near the Beirut seaport, Lebanon and killed more than 200 people and damaged numerous buildings in the vicinity. As Amonium Nitrate (AN) caused the explosion, many studies claimed the release of large amounts of NO2 in the atmosphere may have resulted in a health hazard in Beirut and the vicinity. In order to reasonably evaluate the significance of NO2 amounts released in the atmosphere, it is important to investigate the spatio-temporal distribution of NO2 during and after the blast and compare it to the average day-to-day background emissions from …


Chromophoric Dissolved Organic Matter And Dissolved Organic Carbon In Lakes Across An Elevational Gradient From The Mountains To The Sea, Kyle Juetten, Angela L. Strecker, Aaron Harrison, Zachary Landram, Warren J. De Bruyn, Catherine D. Clark Dec 2022

Chromophoric Dissolved Organic Matter And Dissolved Organic Carbon In Lakes Across An Elevational Gradient From The Mountains To The Sea, Kyle Juetten, Angela L. Strecker, Aaron Harrison, Zachary Landram, Warren J. De Bruyn, Catherine D. Clark

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Dissolved organic matter (DOM) in lakes across elevation gradients is a complex function of topography, climate, vegetation coverage, land use, and lake properties. To examine sources and processing of DOM from sea level to mountain lakes (3–1,574 m), we measured dissolved organic carbon (DOC) concentrations and chromophoric dissolved organic matter (CDOM) optical properties, lake characteristics, and water quality parameters in 62 freshwater lakes in the Pacific Northwest, USA. Higher elevation lakes had lower DOC concentrations and absorbance. These lakes had higher forest cover and minimal wetlands in their watershed, in addition to low nutrients, water temperatures, and chlorophyll a in …


Technical Note: On Uncertainties In Plant Water Isotopic Composition Following Extraction By Cryogenic Vacuum Distillation, Haoyu Diao, Philipp Schuler, Gregory R. Goldsmith, Rolf T. W. Siegwolf, Matthias Saurer, Marco M. Lehmann Nov 2022

Technical Note: On Uncertainties In Plant Water Isotopic Composition Following Extraction By Cryogenic Vacuum Distillation, Haoyu Diao, Philipp Schuler, Gregory R. Goldsmith, Rolf T. W. Siegwolf, Matthias Saurer, Marco M. Lehmann

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Recent studies have challenged the interpretation of plant water isotopes obtained through cryogenic vacuum distillation (CVD) based on observations of a large 2H fractionation. These studies have hypothesized the existence of an H-atom exchange between water and organic tissue during CVD extraction with the magnitude of H exchange related to relative water content of the sample; however, clear evidence is lacking. Here, we systematically tested the uncertainties in the isotopic composition of CVD-extracted water by conducting a series of incubation and rehydration experiments using isotopically depleted water, water at natural isotope abundance, woody materials with exchangeable H, and organic materials …


Climatic Influences On Summer Use Of Winter Precipitation By Trees, Gregory R. Goldsmith, Scott T. Allen, Sabine Braun, Rolf T. W. Siegwolf, James W. Kirchner May 2022

Climatic Influences On Summer Use Of Winter Precipitation By Trees, Gregory R. Goldsmith, Scott T. Allen, Sabine Braun, Rolf T. W. Siegwolf, James W. Kirchner

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Trees in seasonal climates may use water originating from both winter and summer precipitation. However, the seasonal origins of water used by trees have not been systematically studied. We used stable isotopes of water to compare the seasonal origins of water found in three common tree species across 24 Swiss forest sites sampled in two different years. Water from winter precipitation was observed in trees at most sites, even at the peak of summer, although the relative representation of seasonal sources differed by species. However, the representation of winter precipitation in trees decreased with site mean annual precipitation in both …


Evaluating Alternative Ebullition Models For Predicting Peatland Methane Emission And Its Pathways Via Data–Model Fusion, Shuang Ma, Lifen Jiang, Rachel M. Wilson, Jeff P. Chanton, Scott Bridgham, Shuli Niu, Colleen M. Iversen, Avni Malhotra, Jiang Jiang, Xingjie Lu, Yuanyuan Huang, Jason Keller, Xiaofeng Xu, Daniel M. Ricciuto, Paul J. Hanson, Yiqi Luo Apr 2022

Evaluating Alternative Ebullition Models For Predicting Peatland Methane Emission And Its Pathways Via Data–Model Fusion, Shuang Ma, Lifen Jiang, Rachel M. Wilson, Jeff P. Chanton, Scott Bridgham, Shuli Niu, Colleen M. Iversen, Avni Malhotra, Jiang Jiang, Xingjie Lu, Yuanyuan Huang, Jason Keller, Xiaofeng Xu, Daniel M. Ricciuto, Paul J. Hanson, Yiqi Luo

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Understanding the dynamics of peatland methane (CH4) emissions and quantifying sources of uncertainty in estimating peatland CH4 emissions are critical for mitigating climate change. The relative contributions of CH4 emission pathways through ebullition, plant-mediated transport, and diffusion, together with their different transport rates and vulnerability to oxidation, determine the quantity of CH4 to be oxidized before leaving the soil. Notwithstanding their importance, the relative contributions of the emission pathways are highly uncertain. In particular, the ebullition process is more uncertain and can lead to large uncertainties in modeled CH4 emissions. To improve model simulations of CH4 emission and its pathways, …


Methanol Decomposition On Ni(111) And O/Ni(111), Henrik Öström, Bingjie Zhang, Tiffany Vallejo, Bryn Merrill, Jeremy Huang, Jerry Larue Jan 2022

Methanol Decomposition On Ni(111) And O/Ni(111), Henrik Öström, Bingjie Zhang, Tiffany Vallejo, Bryn Merrill, Jeremy Huang, Jerry Larue

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Methanol decomposition on Ni(111) surfaces has been studied in the presence and absence of oxygen using temperature-programmed desorption and temperature-dependent sum frequency generation spectroscopy. Under both conditions the C–H and O–H bonds break, forming carbon monoxide and atomic hydrogen on the surface. No C–O bond scission was observed, limiting the number of reaction pathways. The O–H bonds break first (>150 K), forming surface methoxy, followed by C–H bond breakage (>250 K). All atomic hydrogen desorbs from the surface as H2 through H+H recombinative desorption. H2 desorbs at a higher temperature in the presence of oxygen (>300 K) …


Long Term Air Quality Analysis In Reference To Thermal Power Plants Using Satellite Data In Singrauli Region, India, H. K. Romana, Ramesh P. Singh, D. P. Shukla Aug 2020

Long Term Air Quality Analysis In Reference To Thermal Power Plants Using Satellite Data In Singrauli Region, India, H. K. Romana, Ramesh P. Singh, D. P. Shukla

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

The exponentially growing population and related anthropogenic activities have led to modifications in local environment. The change in local environment, evolving pattern of land use, concentrations of greenhouse gases and aerosols alter the energy balance of our climate system. This alteration in climate is leading to pre-mature deaths worldwide. This study analyses the air quality of Singrauli region, Madhya Pradesh, India for the past 15 years. Otherwise known as Urjanchal “the energy capital” of India has been declared as critically polluted by CPCB. The study provides an updated list of thermal power plants in the study area and their emission …


Global Atmospheric Budget Of Acetone: Air-Sea Exchange And The Contribution To Hydroxyl Radicals, Siyuan Wang, Eric C. Apel, Rebecca H. Schwantes, Kelvin H. Bates, Daniel J. Jacob, Emily V. Fischer, Rebecca S. Hornbrook, Alan J. Hills, Louisa K. Emmons, Laura L. Pan, Shawn Honomichl, Simone Tilmes, Jean‐François Lamarque, Mingxi Yang, Christa A. Marandino, E. S. Saltzman, Warren J. De Bruyn, Sohiko Kameyama, Hiroshi Tanimoto, Yuko Omori, Samuel R. Hall, Kirk Ullmann, Thomas B. Ryerson, Chelsea R. Thompson, Jeff Peischl, Bruce C. Daube, Róisín Commane, Kathryn Mckain, Colm Sweeney, Alexander B. Thames, David O. Miller, William H. Brune, Glenn S. Diskin, Joshua P. Digangi, Steven C. Wofsy Jul 2020

Global Atmospheric Budget Of Acetone: Air-Sea Exchange And The Contribution To Hydroxyl Radicals, Siyuan Wang, Eric C. Apel, Rebecca H. Schwantes, Kelvin H. Bates, Daniel J. Jacob, Emily V. Fischer, Rebecca S. Hornbrook, Alan J. Hills, Louisa K. Emmons, Laura L. Pan, Shawn Honomichl, Simone Tilmes, Jean‐François Lamarque, Mingxi Yang, Christa A. Marandino, E. S. Saltzman, Warren J. De Bruyn, Sohiko Kameyama, Hiroshi Tanimoto, Yuko Omori, Samuel R. Hall, Kirk Ullmann, Thomas B. Ryerson, Chelsea R. Thompson, Jeff Peischl, Bruce C. Daube, Róisín Commane, Kathryn Mckain, Colm Sweeney, Alexander B. Thames, David O. Miller, William H. Brune, Glenn S. Diskin, Joshua P. Digangi, Steven C. Wofsy

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Acetone is one of the most abundant oxygenated volatile organic compounds (VOCs) in the atmosphere. The oceans impose a strong control on atmospheric acetone, yet the oceanic fluxes of acetone remain poorly constrained. In this work, the global budget of acetone is evaluated using two global models: CAM‐chem and GEOS‐Chem. CAM‐chem uses an online air‐sea exchange framework to calculate the bidirectional oceanic acetone fluxes, which is coupled to a data‐oriented machine‐learning approach. The machine‐learning algorithm is trained using a global suite of seawater acetone measurements. GEOS‐Chem uses a fixed surface seawater concentration of acetone to calculate the oceanic fluxes. Both …


Leaf Traits Can Be Used To Predict Rates Of Litter Decomposition, Marc Rosenfield, Jennifer L. Funk, Jason K. Keller, Catrina Clausen, Kimberlee Cyphers Jun 2020

Leaf Traits Can Be Used To Predict Rates Of Litter Decomposition, Marc Rosenfield, Jennifer L. Funk, Jason K. Keller, Catrina Clausen, Kimberlee Cyphers

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Strong relationships exist between litter chemistry traits and rates of litter decomposition. However, leaf traits are more commonly found in online trait databases than litter traits and fewer studies have examined how well leaf traits predict litter decomposition rates. Furthermore, while bulk leaf nitrogen (N) content is known to regulate litter decomposition, few studies have explored the importance of N biochemistry fractions, such as protein and amino acid concentration. Here, we decomposed green leaves and naturally senesced leaf litter of nine species representing a wide range of leaf functional traits. We evaluated the ability of traits associated with leaf and …


Massive Peatland Carbon Banks Vulnerable To Rising Temperatures, A. M. Hopple, R. M. Wilson, M. Kolton, Cassandra A. Zalman, J. P. Chanton, J. Kostka, P. J. Hanson, Jason K. Keller, S. D. Bridgham May 2020

Massive Peatland Carbon Banks Vulnerable To Rising Temperatures, A. M. Hopple, R. M. Wilson, M. Kolton, Cassandra A. Zalman, J. P. Chanton, J. Kostka, P. J. Hanson, Jason K. Keller, S. D. Bridgham

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Peatlands contain one-third of the world’s soil carbon (C). If destabilized, decomposition of this vast C bank could accelerate climate warming; however, the likelihood of this outcome remains unknown. Here, we examine peatland C stability through five years of whole-ecosystem warming and two years of elevated atmospheric carbon dioxide concentrations (eCO2). Warming exponentially increased methane (CH4) emissions and enhanced CH4 production rates throughout the entire soil profile; although surface CH4 production rates remain much greater than those at depth. Additionally, older deeper C sources played a larger role in decomposition following prolonged warming. Most …


Methanethiol, Dimethyl Sulfide And Acetone Over Biologically Productive Waters In The Southwest Pacific Ocean, Sarah J. Lawson, Cliff S. Law, Mike J. Harvey, Thomas G. Bell, Carolyn F. Walker, Warren J. De Bruyn, Eric S. Saltzman Mar 2020

Methanethiol, Dimethyl Sulfide And Acetone Over Biologically Productive Waters In The Southwest Pacific Ocean, Sarah J. Lawson, Cliff S. Law, Mike J. Harvey, Thomas G. Bell, Carolyn F. Walker, Warren J. De Bruyn, Eric S. Saltzman

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Atmospheric methanethiol (MeSHa), dimethyl sulfide (DMSa) and acetone (acetonea) were measured over biologically productive frontal waters in the remote southwest Pacific Ocean in summertime 2012 during the Surface Ocean Aerosol Production (SOAP) voyage. MeSHa mixing ratios varied from below the detection limit (< 10 ppt) up to 65 ppt and were 3 %–36 % of parallel DMSa mixing ratios. MeSHa and DMSa were correlated over the voyage (R2=0.3, slope = 0.07) with a stronger correlation over a coccolithophore-dominated phytoplankton bloom (R2=0.5, slope 0.13). The diurnal cycle for MeSHa shows similar behaviour to DMSa with mixing ratios …


Air/Sea Transfer Of Highly Soluble Gases Over Coastal Waters, J. G. Porter, Warren J. De Bruyn, S. D. Miller, E. S. Saltzman Jan 2020

Air/Sea Transfer Of Highly Soluble Gases Over Coastal Waters, J. G. Porter, Warren J. De Bruyn, S. D. Miller, E. S. Saltzman

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

The deposition of soluble trace gases to the sea surface is not well studied due to a lack of flux measurements over the ocean. Here we report simultaneous air/sea eddy covariance flux measurements of water vapor, sulfur dioxide (SO2), and momentum from a coastal North Atlantic pier. Gas transfer velocities were on average about 20% lower for SO2 than for H2O. This difference is attributed to the difference in molecular diffusivity between the two molecules (D SO 2/D H 2O = 0.5), in reasonable agreement with bulk parameterizations in air/sea gas …


Global Sinusoidal Seasonality In Precipitation Isotopes, Scott T. Allen, Scott Jasechko, Wouter R. Berghuijs, Jeffrey M. Welker, Gregory R. Goldsmith, James W. Kirchner Aug 2019

Global Sinusoidal Seasonality In Precipitation Isotopes, Scott T. Allen, Scott Jasechko, Wouter R. Berghuijs, Jeffrey M. Welker, Gregory R. Goldsmith, James W. Kirchner

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Quantifying seasonal variations in precipitation δ2H and δ18O is important for many stable isotope applications, including inferring plant water sources and streamflow ages. Our objective is to develop a data product that concisely quantifies the seasonality of stable isotope ratios in precipitation. We fit sine curves defined by amplitude, phase, and offset parameters to quantify annual precipitation isotope cycles at 653 meteorological stations on all seven continents. At most of these stations, including in tropical and subtropical regions, sine curves can represent the seasonal cycles in precipitation isotopes. Additionally, the amplitude, phase, and offset parameters of …


Seasonal Origins Of Soil Water Used By Trees, Scott T. Allen, James W. Kirchner, Sabine Braun, Rolf T. W. Siegwolf, Gregory R. Goldsmith Mar 2019

Seasonal Origins Of Soil Water Used By Trees, Scott T. Allen, James W. Kirchner, Sabine Braun, Rolf T. W. Siegwolf, Gregory R. Goldsmith

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Rain recharges soil water storages and either percolates downward into aquifers and streams or is returned to the atmosphere through evapotranspiration. Although it is commonly assumed that summer rainfall recharges plant-available water during the growing season, the seasonal origins of water used by plants have not been systematically explored. We characterize the seasonal origins of waters in soils and trees by comparing their midsummer isotopic signatures (δ2H) to seasonal isotopic cycles in precipitation, using a new seasonal origin index. Across 182 Swiss forest sites, xylem water isotopic signatures show that summer rain was not the predominant water source …


Spatial Variation In Throughfall, Soil, And Plant Water Isotopes In A Temperate Forest, Gregory R. Goldsmith, Scott T. Allen, Sabine Braun, Nadine Engbersen, Clara Romero González-Quijano, James W. Kirchner, Rolf T. W. Siegwolf Nov 2018

Spatial Variation In Throughfall, Soil, And Plant Water Isotopes In A Temperate Forest, Gregory R. Goldsmith, Scott T. Allen, Sabine Braun, Nadine Engbersen, Clara Romero González-Quijano, James W. Kirchner, Rolf T. W. Siegwolf

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Studies of stable isotopes of water in the environment have been fundamental to advancing our understanding of how water moves through the soil‐plant‐atmosphere continuum; however, much of this research focuses on how water isotopes vary in time, rather than in space. We examined the spatial variation in the δ18O and δ2H of throughfall and bulk soil water, as well as branch xylem and bulk leaf water of Picea abies (Norway Spruce) and Fagus sylvatica (Beech), in a 1 ha forest plot in the northern Alps of Switzerland. Means and ranges of water isotope ratios varied considerably …


Eddy Flux Measurements Of Sulfur Dioxide Deposition To The Sea Surface, Jack G. Porter, Warren J. De Bruyn, Eric S. Saltzman Oct 2018

Eddy Flux Measurements Of Sulfur Dioxide Deposition To The Sea Surface, Jack G. Porter, Warren J. De Bruyn, Eric S. Saltzman

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Deposition to the sea surface is a major atmospheric loss pathway for many important trace gases, such as sulfur dioxide (SO2). The air–sea transfer of SO2 is controlled entirely on the atmospheric side of the air–sea interface due to high effective solubility and other physical– chemical properties. There have been few direct field measurements of such fluxes due to the challenges associated with making fast-response measurements of highly soluble trace gases at very low ambient levels. In this study, we report direct eddy covariance air–sea flux measurements of SO2, sensible heat, water vapor, and momentum. The measurements were made over …


Predicting Spatial Patterns In Precipitation Isotope (Δ2h And Δ18o) Seasonality Using Sinusoidal Isoscapes, Scott T. Allen, James W. Kirchner, Gregory R. Goldsmith May 2018

Predicting Spatial Patterns In Precipitation Isotope (Δ2h And Δ18o) Seasonality Using Sinusoidal Isoscapes, Scott T. Allen, James W. Kirchner, Gregory R. Goldsmith

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Understanding how precipitation isotopes vary spatially and temporally is important for tracer applications. We tested how well month‐to‐month variations in precipitation δ18O and δ2H were captured by sinusoidal cycles, and how well spatial variations in these seasonal cycles could be predicted, across Switzerland. Sine functions representing seasonal cycles in precipitation isotopes explained between 47% and 94% of the variance in monthly δ18O and δ2H values at each monitoring site. A significant sinusoidal cycle was also observed in line‐conditioned excess. We interpolated the amplitudes, phases, and offsets of these sine functions across the landscape, using multiple linear …


Automating Data Analysis For Two-Dimensional Gas Chromatography/Time-Of-Flight Mass Spectrometry Non-Targeted Analysis Of Comparative Samples, Ivan A. Titaley, O. Maduka Ogba, Leah Chibwe, Eunha Hoh, Paul H.-Y. Cheong, Staci L. Massey Simonich Feb 2018

Automating Data Analysis For Two-Dimensional Gas Chromatography/Time-Of-Flight Mass Spectrometry Non-Targeted Analysis Of Comparative Samples, Ivan A. Titaley, O. Maduka Ogba, Leah Chibwe, Eunha Hoh, Paul H.-Y. Cheong, Staci L. Massey Simonich

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Non-targeted analysis of environmental samples, using comprehensive two‐dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC × GC/ToF-MS), poses significant data analysis challenges due to the large number of possible analytes. Non-targeted data analysis of complex mixtures is prone to human bias and is laborious, particularly for comparative environmental samples such as contaminated soil pre- and post-bioremediation. To address this research bottleneck, we developed OCTpy, a Python™ script that acts as a data reduction filter to automate GC × GC/ToF-MS data analysis from LECO® ChromaTOF® software and facilitates selection of analytes of interest based on peak area …


No Evidence For Trace Metal Limitation On Anaerobic Carbon Mineralization In Three Peatland Soils, Jason K. Keller, Jillian Wade Nov 2017

No Evidence For Trace Metal Limitation On Anaerobic Carbon Mineralization In Three Peatland Soils, Jason K. Keller, Jillian Wade

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Peatlands store roughly one-third of the terrestrial soil carbon and release the potent greenhouse gas methane (CH4) to the atmosphere, making these wetlands among the most important ecosystems in the global carbon cycle. Despite their importance, the controls of anaerobic decomposition of organic matter to carbon dioxide (CO2) and CH4 within peatlands are not well understood. It is known, however, that the enzymes responsible for CH4 production require cobalt, iron and nickel, and there is a growing appreciation for the potential role of trace metal limitation in anaerobic decomposition. To explore the possibility of …


Estimation Of Bubble-Mediated Air–Sea Gas Exchange From Concurrent Dms And Co2 Transfer Velocities At Intermediate–High Wind Speeds, Thomas G. Bell, Sebastian Landwehr, Scott D. Miller, Warren J. De Bruyn, Adrian H. Callaghan, Brian Scanlon, Brian Ward, Mingxi Yang, Eric S. Saltzman Jul 2017

Estimation Of Bubble-Mediated Air–Sea Gas Exchange From Concurrent Dms And Co2 Transfer Velocities At Intermediate–High Wind Speeds, Thomas G. Bell, Sebastian Landwehr, Scott D. Miller, Warren J. De Bruyn, Adrian H. Callaghan, Brian Scanlon, Brian Ward, Mingxi Yang, Eric S. Saltzman

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Simultaneous air–sea fluxes and concentration differences of dimethylsulfide (DMS) and carbon dioxide (CO2/ were measured during a summertime North Atlantic cruise in 2011. This data set reveals significant differences between the gas transfer velocities of these two gases (1kw/ over a range of wind speeds up to 21ms􀀀1. These differences occur at and above the approximate wind speed threshold when waves begin breaking. Whitecap fraction (a proxy for bubbles) was also measured and has a positive relationship with 1kw, consistent with enhanced bubble-mediated transfer of the less soluble CO2 relative to that of the more soluble DMS. However, the correlation …


Hydrogenation Of Organic Matter As A Terminal Electron Sink Sustains High Co2:Ch4 Production Ratios During Anaerobic Decomposition, Rachel M. Wilson, Malak M. Tfaily, Virginia I. Rich, Jason K. Keller, Scott D. Bridgham, Cassandra Medvedeff Zalman, Laura Meredith, Paul J. Hanson, Mark Hines, Laurel Pfeifer-Meister, Scott R. Saleska, Patrick Crill, William T. Cooper, Jeff P. Chanton, Joel E. Kostka Jul 2017

Hydrogenation Of Organic Matter As A Terminal Electron Sink Sustains High Co2:Ch4 Production Ratios During Anaerobic Decomposition, Rachel M. Wilson, Malak M. Tfaily, Virginia I. Rich, Jason K. Keller, Scott D. Bridgham, Cassandra Medvedeff Zalman, Laura Meredith, Paul J. Hanson, Mark Hines, Laurel Pfeifer-Meister, Scott R. Saleska, Patrick Crill, William T. Cooper, Jeff P. Chanton, Joel E. Kostka

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Once inorganic electron acceptors are depleted, organic matter in anoxic environments decomposes by hydrolysis, fermentation, and methanogenesis, requiring syntrophic interactions between microorganisms to achieve energetic favorability. In this classic anaerobic food chain, methanogenesis represents the terminal electron accepting (TEA) process, ultimately producing equimolar CO2 and CH4 for each molecule of organic matter degraded. However, CO2:CH4 production in Sphagnum-derived, mineral-poor, cellulosic peat often substantially exceeds this 1:1 ratio, even in the absence of measureable inorganic TEAs. Since the oxidation state of C in both cellulose-derived organic matter and acetate is 0, and CO2 has …


Erratum To: Zn (Ii) And Cu (Ii) Adsorption And Retention Onto Iron Oxyhydroxide Nanoparticles: Effects Of Particle Aggregation And Salinity, Rebecca B. Chesne, Christopher S. Kim Nov 2015

Erratum To: Zn (Ii) And Cu (Ii) Adsorption And Retention Onto Iron Oxyhydroxide Nanoparticles: Effects Of Particle Aggregation And Salinity, Rebecca B. Chesne, Christopher S. Kim

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

In the original version of this article errors in Figs. 5 and 9 were identified by the authors. The corrected figures are given.