Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Environmental Chemistry

Old Dominion University

Ozone

Publication Year

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Fifteen Years Of Hfc-134a Satellite Observations: Comparisons With Slimcat Calculations, Jeremy J. Harrison, Martyn P. Chipperfield, Christopher D. Boone, Sandip S. Dhomse, Peter F. Bernath Jan 2021

Fifteen Years Of Hfc-134a Satellite Observations: Comparisons With Slimcat Calculations, Jeremy J. Harrison, Martyn P. Chipperfield, Christopher D. Boone, Sandip S. Dhomse, Peter F. Bernath

Chemistry & Biochemistry Faculty Publications

The phase out of anthropogenic ozone-depleting substances such as chlorofluorocarbons under the terms of the Montreal Protocol led to the development and worldwide use of hydrofluorocarbons (HFCs) in refrigeration, air conditioning, and as blowing agents and propellants. Consequently, over recent years, the atmospheric abundances of HFCs have dramatically increased. HFCs are powerful greenhouse gases and are now controlled under the terms of the 2016 Kigali Amendment to the Montreal Protocol. HFC-134a is currently the most abundant HFC in the atmosphere, breaking the 100 ppt barrier in 2018, and can be measured in the Earth's atmosphere by the satellite remote-sensing instrument …


Recent Trends In Stratospheric Chlorine From Very Short‐Lived Substances, Ryan Hossaini, Elliot Atlas, Sandip S. Dhomse, Martyn P. Chipperfield, Peter F. Bernath, Anton M. Fernando, Jens Mühle, Amber A. Leeson, Stephen A. Montzka, Wuhu Feng Jan 2019

Recent Trends In Stratospheric Chlorine From Very Short‐Lived Substances, Ryan Hossaini, Elliot Atlas, Sandip S. Dhomse, Martyn P. Chipperfield, Peter F. Bernath, Anton M. Fernando, Jens Mühle, Amber A. Leeson, Stephen A. Montzka, Wuhu Feng

Chemistry & Biochemistry Faculty Publications

Very short‐lived substances (VSLS), including dichloromethane (CH2Cl2), chloroform (CHCl3), perchloroethylene (C2Cl4), and 1,2‐dichloroethane (C2H4Cl2), are a stratospheric chlorine source and therefore contribute to ozone depletion. We quantify stratospheric chlorine trends from these VSLS (VSLCltot) using a chemical transport model and atmospheric measurements, including novel high‐altitude aircraft data from the NASA VIRGAS (2015) and POSIDON (2016) missions. We estimate VSLCltot increased from 69 (±14) parts per trillion (ppt) Cl in 2000 to 111 (±22) ppt Cl in 2017, with >80% delivered to …


Phosgene In The Upper Troposphere And Lower Stratosphere: A Marker For Product Gas Injection Due To Chlorine-Containing Very Short Lived Substances, Jeremy J. Harrison, Martyn P. Chipperfield, Ryan Hossaini, Christopher D. Boone, Sandip Dhomse, Wuhu Feng, Peter F. Bernath Jan 2019

Phosgene In The Upper Troposphere And Lower Stratosphere: A Marker For Product Gas Injection Due To Chlorine-Containing Very Short Lived Substances, Jeremy J. Harrison, Martyn P. Chipperfield, Ryan Hossaini, Christopher D. Boone, Sandip Dhomse, Wuhu Feng, Peter F. Bernath

Chemistry & Biochemistry Faculty Publications

Abstract: Phosgene in the atmosphere is produced via the degradation of carbon tetrachloride, methyl chloroform, and a number of chlorine‐containing very short lived substances (VSLS). These VSLS are not regulated by the Montreal Protocol even though they contribute to stratospheric ozone depletion. While observations of VSLS can quantify direct stratospheric source gas injection, observations of phosgene in the upper troposphere/lower stratosphere can be used as a marker of product gas injection of chlorine‐containing VSLS. In this work we report upper troposphere/lower stratosphere measurements of phosgene made by the ACE‐FTS (Atmospheric Chemistry Experiment Fourier Transform Spectrometer) instrument and compare with results …


Surface Oxygenation Of Biochar Through Ozonization For Dramatically Enhancing Cation Exchange Capacity, Matthew D. Huff, Sarah Marshall, Haitham A. Saeed, James Weifu Lee Jan 2018

Surface Oxygenation Of Biochar Through Ozonization For Dramatically Enhancing Cation Exchange Capacity, Matthew D. Huff, Sarah Marshall, Haitham A. Saeed, James Weifu Lee

Chemistry & Biochemistry Faculty Publications

Background

Biochar cation exchange capacity (CEC) is a key property that is central to biochar environmental applications including the retention of soil nutrients in soil amendment and removal of certain pollutants in water-filtration applications.

Results

This study reports an innovative biochar-ozonization process that dramatically increases the CEC value of biochars by a factor of 2. The ozonized biochars also show great improvement on adsorption of methylene blue by as much as a factor of about 5. In this study, biochar samples treated with and without ozone were analyzed by means of pH and CEC assays, water field capacity measurement, elemental …


Analysis Of Iasi Tropospheric O₃ Data Over The Arctic During Polarcat Campaigns In 2008, M. Pommier, C. Clerbaux, K. S. Law, G. Ancellet, P. Bernath, P.-F. Coheur, J. Hadji-Lazaro, D. Hurtmans, P. Nédélec, J.-D. Paris, F. Ravetta, T. B. Ryerson, H. Schlager, A. J. Weinheimer Jan 2012

Analysis Of Iasi Tropospheric O₃ Data Over The Arctic During Polarcat Campaigns In 2008, M. Pommier, C. Clerbaux, K. S. Law, G. Ancellet, P. Bernath, P.-F. Coheur, J. Hadji-Lazaro, D. Hurtmans, P. Nédélec, J.-D. Paris, F. Ravetta, T. B. Ryerson, H. Schlager, A. J. Weinheimer

Chemistry & Biochemistry Faculty Publications

Ozone data retrieved in the Arctic region from infrared radiance spectra recorded by the Infrared Atmospheric Sounding Interferometer (IASI) on board the MetOp-A European satellite are presented. They are compared with in situ and lidar observations obtained during a series of aircraft measurement campaigns as part of the International Polar Year POLARCAT activities in spring and summer 2008. Different air masses were sampled during the campaigns including clean air, polluted plumes originating from anthropogenic sources, forest fire plumes from the three northern continents, and stratospheric-influenced air masses. The comparison between IASI O3 [0–8 km], [0–12 km] partial columns and …