Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Engineering

Graphene

Legacy Theses & Dissertations (2009 - 2024)

Publication Year

Articles 1 - 6 of 6

Full-Text Articles in Physical Sciences and Mathematics

Electron Transport In One And Two Dimensional Materials, Samuel William Lagasse Jan 2019

Electron Transport In One And Two Dimensional Materials, Samuel William Lagasse

Legacy Theses & Dissertations (2009 - 2024)

This dissertation presents theoretical and experimental studies in carbon nanotubes (CNTs), graphene, and van der Waals heterostructures. The first half of the dissertation focuses on cutting edge tight-binding-based quantum transport models which are used to study proton irradiation-induced single-event effects in carbon nanotubes [1], total ionizing dose effects in graphene [2], quantum hall effect in graded graphene p-n junctions [3], and ballistic electron focusing in graphene p-n junctions [4]. In each study, tight-binding models are developed, with heavy emphasis on tying to experimental data. Once benchmarked against experiment, properties of each system which are difficult to access in the laboratory, …


Novel Two-Dimensional Devices For Future Applications, Pratik Agnihotri Jan 2016

Novel Two-Dimensional Devices For Future Applications, Pratik Agnihotri

Legacy Theses & Dissertations (2009 - 2024)

The scalability of field effect transistor has led to the monumental success of complementary metal-oxide-semiconductor (CMOS) technology. In the past, device scaling was not the major issue to a greater extent. Recently with current technology nodes, transistor characteristics show signs of reduced performance due to short channel effects and other issues related to device scaling. Device designers look for innovative ways to enhance the transistor performance while keeping up with device miniaturization. Successful inventions include the development of tri-gate technology, gate all around (GAA) field effect transistors, silicon-on-insulator substrate, and high-k dielectrics. These developments have enabled the device scaling that …


Fundamental Studies Of Supported Graphene Interfaces : Defect Density Of States In Graphene Field Effect Transistors (Fets) And Ideal Graphene - Silicon Schottky Diodes, Dhiraj Sinha Jan 2014

Fundamental Studies Of Supported Graphene Interfaces : Defect Density Of States In Graphene Field Effect Transistors (Fets) And Ideal Graphene - Silicon Schottky Diodes, Dhiraj Sinha

Legacy Theses & Dissertations (2009 - 2024)

The physics of transport in atomically thin 2D materials is an active area of research, important for understanding fundamental properties of reduced dimensional materials and for applications. New phenomena based on graphene may include properties of topologically protected insulators. Applications of these materials are envisioned in electronics, optoelectronics and spintronics.


Growth And Characterization Of Graphene On Cuni Substrates, Parul Tyagi Jan 2014

Growth And Characterization Of Graphene On Cuni Substrates, Parul Tyagi

Legacy Theses & Dissertations (2009 - 2024)

Graphene is a single layer of sp2 bonded carbon atoms that crystallizes in the honeycomb structure. Because of its true two-dimensional structure, it has very unique electrical properties, including a very high carrier mobility that is symmetric for holes and electrons. To realize these unique properties, it is important to develop a method for growing graphene films with uniform thickness and low defect density. One of the most popular methods of growth is by chemical vapor deposition on Cu substrates, because it is self-limited. However many applications require the growth of graphene films that are more than one atomic layer …


Metal Oxide Growth, Spin Precession Measurements And Raman Spectroscopy Of Cvd Graphene, Akitomo Matsubayashi Jan 2014

Metal Oxide Growth, Spin Precession Measurements And Raman Spectroscopy Of Cvd Graphene, Akitomo Matsubayashi

Legacy Theses & Dissertations (2009 - 2024)

The focus of this dissertation is to explore the possibility of wafer scale graphene-based spintronics. Graphene is a single atomic layer of sp2 bonded carbon atoms that has attracted much attention as a new type of electronic material due to its high carrier mobilities, superior mechanical properties and extremely high thermal conductivity. In addition, it has become an attractive material for use in spintronic devices owing to its long electron spin relaxation time at room temperature. This arises in part from its low spin-orbit coupling and negligible nuclear hyperfine interaction. In order to realize wafer scale graphene spintronics, utilization of …


The Influence Of Copper Substrate Orientation On Graphene Growth, Zachary Robert Robinson Jan 2012

The Influence Of Copper Substrate Orientation On Graphene Growth, Zachary Robert Robinson

Legacy Theses & Dissertations (2009 - 2024)

This dissertation is focused on determining the influence of the copper substrate on graphene grown by \ac{CVD}. Graphene, which can be grown in single atomic layers on copper substrates, has potential applications in future electronic devices. One of the key issues for the use of graphene grown by chemical vapor deposition for device applications is the influence of defects on the transport properties of the graphene. For instance, growth on metal foil substrates results in multi-domain graphene growth because the foil substrates themselves have a variety of different surface terminations. Therefore, they don't serve as a very good template for …