Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 17 of 17

Full-Text Articles in Physical Sciences and Mathematics

Uncertainty-Aware Deep Learning For Prediction Of Remaining Useful Life Of Mechanical Systems, Samuel J. Cornelius Dec 2021

Uncertainty-Aware Deep Learning For Prediction Of Remaining Useful Life Of Mechanical Systems, Samuel J. Cornelius

Theses and Dissertations

Remaining useful life (RUL) prediction is a problem that researchers in the prognostics and health management (PHM) community have been studying for decades. Both physics-based and data-driven methods have been investigated, and in recent years, deep learning has gained significant attention. When sufficiently large and diverse datasets are available, deep neural networks can achieve state-of-the-art performance in RUL prediction for a variety of systems. However, for end users to trust the results of these models, especially as they are integrated into safety-critical systems, RUL prediction uncertainty must be captured. This work explores an approach for estimating both epistemic and heteroscedastic …


Contrastive Learning For Unsupervised Auditory Texture Models, Christina Trexler Dec 2021

Contrastive Learning For Unsupervised Auditory Texture Models, Christina Trexler

Computer Science and Computer Engineering Undergraduate Honors Theses

Sounds with a high level of stationarity, also known as sound textures, have perceptually relevant features which can be captured by stimulus-computable models. This makes texture-like sounds, such as those made by rain, wind, and fire, an appealing test case for understanding the underlying mechanisms of auditory recognition. Previous auditory texture models typically measured statistics from auditory filter bank representations, and the statistics they used were somewhat ad-hoc, hand-engineered through a process of trial and error. Here, we investigate whether a better auditory texture representation can be obtained via contrastive learning, taking advantage of the stationarity of auditory textures to …


Joint Linear And Nonlinear Computation With Data Encryption For Efficient Privacy-Preserving Deep Learning, Qiao Zhang Dec 2021

Joint Linear And Nonlinear Computation With Data Encryption For Efficient Privacy-Preserving Deep Learning, Qiao Zhang

Electrical & Computer Engineering Theses & Dissertations

Deep Learning (DL) has shown unrivalled performance in many applications such as image classification, speech recognition, anomalous detection, and business analytics. While end users and enterprises own enormous data, DL talents and computing power are mostly gathered in technology giants having cloud servers. Thus, data owners, i.e., the clients, are motivated to outsource their data, along with computationally-intensive tasks, to the server in order to leverage the server’s abundant computation resources and DL talents for developing cost-effective DL solutions. However, trust is required between the server and the client to finish the computation tasks (e.g., conducting inference for the newly-input …


Deep Learning For Weather Clustering And Forecasting, Nathaniel R. Beveridge Sep 2021

Deep Learning For Weather Clustering And Forecasting, Nathaniel R. Beveridge

Theses and Dissertations

Clustering weather data is a valuable endeavor in multiple respects. The results can be used in various ways within a larger weather prediction framework or could simply serve as an analytical tool for characterizing climatic differences of a particular region of interest. This research proposes a methodology for clustering geographic locations based on the similarity in shape of their temperature time series over a long time horizon of approximately 11 months. To this end an emerging and powerful class of clustering techniques that leverages deep learning, called deep representation clustering (DRC), are utilized. Moreover, a time series specific DRC algorithm …


Gradient Free Sign Activation Zero One Loss Neural Networks For Adversarially Robust Classification, Yunzhe Xue Aug 2021

Gradient Free Sign Activation Zero One Loss Neural Networks For Adversarially Robust Classification, Yunzhe Xue

Dissertations

The zero-one loss function is less sensitive to outliers than convex surrogate losses such as hinge and cross-entropy. However, as a non-convex function, it has a large number of local minima, andits undifferentiable attribute makes it impossible to use backpropagation, a method widely used in training current state-of-the-art neural networks. When zero-one loss is applied to deep neural networks, the entire training process becomes challenging. On the other hand, a massive non-unique solution probably also brings different decision boundaries when optimizing zero-one loss, making it possible to fight against transferable adversarial examples, which is a common weakness in deep learning …


Towards Adversarial Robustness With 01 Lossmodels, And Novel Convolutional Neural Netsystems For Ultrasound Images, Meiyan Xie Aug 2021

Towards Adversarial Robustness With 01 Lossmodels, And Novel Convolutional Neural Netsystems For Ultrasound Images, Meiyan Xie

Dissertations

This dissertation investigates adversarial robustness with 01 loss models and a novel convolutional neural net systems for vascular ultrasound images.

In the first part, the dissertation presents stochastic coordinate descent for 01 loss and its sensitivity to adversarial attacks. The study here suggests that 01 loss may be more resilient to adversarial attacks than the hinge loss and further work is required.

In the second part, this dissertation proposes sign activation network with a novel gradient-free stochastic coordinate descent algorithm and its ensembling model. The study here finds that the ensembling model gives a high minimum distortion (as measured by …


Development Of Deep Learning Neural Network For Ecological And Medical Images, Shaobo Liu May 2021

Development Of Deep Learning Neural Network For Ecological And Medical Images, Shaobo Liu

Dissertations

Deep learning in computer vision and image processing has attracted attentions from various fields including ecology and medical image. Ecologists are interested in finding an effective model structure to classify different species. Tradition deep learning model use a convolutional neural network, such as LeNet, AlexNet, VGG models, residual neural network, and inception models, are first used on classifying bee wing and butterfly datasets. However, insufficient data sample and unbalanced samples in each class have caused a poor accuracy. To make improvement the test accuracy, data augmentation and transfer learning are applied. Recently developed deep learning framework based on mathematical morphology …


Deep Learning On Image Forensics And Anti-Forensics, Zhangyi Shen May 2021

Deep Learning On Image Forensics And Anti-Forensics, Zhangyi Shen

Dissertations

Image forensics protect the authenticity and integrity of digital images. On the contrary, as the countermeasures of digital forensics, anti-forensics is applied to expose the vulnerability of forensics tools. Consequently, forensics researchers could develop forensics tools against possible new attacks. This dissertation investigation demonstrates two image forensics methods based on convolutional neural network (CNN) and two image anti-forensics methods based on generative adversarial network (GAN).

Detecting unsharp masking (USM) sharpened image is the first study in this dissertation. A CNN architecture comprises four convolutional layers and a classification module is proposed to discriminate sharpened images and unsharpened images. The results …


Wound Image Classification Using Deep Convolutional Neural Networks, Behrouz Rostami May 2021

Wound Image Classification Using Deep Convolutional Neural Networks, Behrouz Rostami

Theses and Dissertations

Artificial Intelligence (AI) includes subfields like Machine Learning (ML) and DeepLearning (DL) and discusses intelligent systems that mimic human behaviors. ML has been used in a wide range of fields. Particularly in the healthcare domain, medical images often need to be carefully processed via such operations as classification and segmentation. Unlike traditional ML methods, DL algorithms are based on deep neural networks that are trained on a large amount of labeled data to extract features without human intervention. DL algorithms have become popular and powerful in classifying and segmenting medical images in recent years. In this thesis, we shall study …


A Fully-Automated, Deep Learning-Based Framework For Ct-Based Localization, Segmentation, Verification And Planning Of Metastatic Vertebrae, Tucker Netherton, Tucker James Netherton May 2021

A Fully-Automated, Deep Learning-Based Framework For Ct-Based Localization, Segmentation, Verification And Planning Of Metastatic Vertebrae, Tucker Netherton, Tucker James Netherton

Dissertations & Theses (Open Access)

Palliative radiotherapy is an effective treatment for the palliation of symptoms caused by vertebral metastases. Visible evidence of disease is localized on medical images as part of the treatment planning process. However, complicating factors such as time pressures, anatomic variants in the spine, and similarities in adjacent vertebrae are associated with wrong level treatments of the spine. In addition, erroneous manual contouring of anatomic structures is a major failure mode in radiotherapy treatment planning.

The purpose of this study is to mitigate the challenges associated with treatment planning of the spine by automating the treatment planning process for three-dimensional conformal …


A Deep Learning-Based Automatic Object Detection Method For Autonomous Driving Ships, Ojonoka Erika Atawodi May 2021

A Deep Learning-Based Automatic Object Detection Method For Autonomous Driving Ships, Ojonoka Erika Atawodi

Master's Theses

An important feature of an Autonomous Surface Vehicles (ASV) is its capability of automatic object detection to avoid collisions, obstacles and navigate on their own.

Deep learning has made some significant headway in solving fundamental challenges associated with object detection and computer vision. With tremendous demand and advancement in the technologies associated with ASVs, a growing interest in applying deep learning techniques in handling challenges pertaining to autonomous ship driving has substantially increased over the years.

In this thesis, we study, design, and implement an object recognition framework that detects and recognizes objects found in the sea. We first curated …


Improving Treatment Of Local Liver Ablation Therapy With Deep Learning And Biomechanical Modeling, Brian Anderson, Kristy Brock, Laurence Court, Carlos Eduardo Cardenas, Erik Cressman, Ankit Patel May 2021

Improving Treatment Of Local Liver Ablation Therapy With Deep Learning And Biomechanical Modeling, Brian Anderson, Kristy Brock, Laurence Court, Carlos Eduardo Cardenas, Erik Cressman, Ankit Patel

Dissertations & Theses (Open Access)

In the United States, colorectal cancer is the third most diagnosed cancer, and 60-70% of patients will develop liver metastasis. While surgical liver resection of metastasis is the standard of care for treatment with curative intent, it is only avai lable to about 20% of patients. For patients who are not surgical candidates, local percutaneous ablation therapy (PTA) has been shown to have a similar 5-year overall survival rate. However, PTA can be a challenging procedure, largely due to spatial uncertainties in the localization of the ablation probe, and in measuring the delivered ablation margin.

For this work, we hypothesized …


Deep Learning For Task-Based Image Quality Assessment In Medical Imaging, Weimin Zhou Jan 2021

Deep Learning For Task-Based Image Quality Assessment In Medical Imaging, Weimin Zhou

McKelvey School of Engineering Theses & Dissertations

It has been advocated to use objective measures of image quality (IQ) for assessing and optimizing medical imaging systems. Objective measures of IQ quantify the performance of an observer at a specific diagnostic task. Binary signal detection tasks and joint signal detection and localization (detection-localization) tasks are commonly considered in medical imaging. When optimizing imaging systems for binary signal detection tasks, the performance of the Bayesian Ideal Observer (IO) has been advocated for use as a figure-of-merit (FOM). The IO maximizes the observer performance that is summarized by the receiver operating characteristic (ROC) curve. When signal detection-localization tasks are considered, …


Texture-Driven Image Clustering In Laser Powder Bed Fusion, Alexander H. Groeger Jan 2021

Texture-Driven Image Clustering In Laser Powder Bed Fusion, Alexander H. Groeger

Browse all Theses and Dissertations

The additive manufacturing (AM) field is striving to identify anomalies in laser powder bed fusion (LPBF) using multi-sensor in-process monitoring paired with machine learning (ML). In-process monitoring can reveal the presence of anomalies but creating a ML classifier requires labeled data. The present work approaches this problem by printing hundreds of Inconel-718 coupons with different processing parameters to capture a wide range of process monitoring imagery with multiple sensor types. Afterwards, the process monitoring images are encoded into feature vectors and clustered to isolate groups in each sensor modality. Four texture representations were learned by training two convolutional neural network …


Adaptive Two-Stage Edge-Centric Architecture For Deeply-Learned Embedded Real-Time Target Classification In Aerospace Sense-And-Avoidance Applications, Nicholas A. Speranza Jan 2021

Adaptive Two-Stage Edge-Centric Architecture For Deeply-Learned Embedded Real-Time Target Classification In Aerospace Sense-And-Avoidance Applications, Nicholas A. Speranza

Browse all Theses and Dissertations

With the growing number of Unmanned Aircraft Systems, current network-centric architectures present limitations in meeting real-time and time-critical requirements. Current methods utilizing centralized off-platform processing have inherent energy inefficiencies, scalability challenges, performance concerns, and cyber vulnerabilities. In this dissertation, an adaptive, two-stage, energy-efficient, edge-centric architecture is proposed to address these limitations. A novel, edge-centric Sense-and-Avoidance architecture framework is presented, and a corresponding prototype is developed using commercial hardware to validate the proposed architecture. Instead of a network-centric approach, processing is distributed at the logical edge of the sensors, and organized as Detection and Classification Subsystems. Classical machine vision algorithms are …


Deep Learning For Compressive Sar Imaging With Train-Test Discrepancy, Morgan R. Mccamey Jan 2021

Deep Learning For Compressive Sar Imaging With Train-Test Discrepancy, Morgan R. Mccamey

Browse all Theses and Dissertations

We consider the problem of compressive synthetic aperture radar (SAR) imaging with the goal of reconstructing SAR imagery in the presence of under sampled phase history. While this problem is typically considered in compressive sensing (CS) literature, we consider a variety of deep learning approaches where a deep neural network (DNN) is trained to form SAR imagery from limited data. At the cost of computationally intensive offline training, on-line test-time DNN-SAR has demonstrated orders of magnitude faster reconstruction than standard CS algorithms. A limitation of the DNN approach is that any change to the operating conditions necessitates a costly retraining …


Texture-Driven Image Clustering In Laser Powder Bed Fusion, Alexander H. Groeger Jan 2021

Texture-Driven Image Clustering In Laser Powder Bed Fusion, Alexander H. Groeger

Browse all Theses and Dissertations

The additive manufacturing (AM) field is striving to identify anomalies in laser powder bed fusion (LPBF) using multi-sensor in-process monitoring paired with machine learning (ML). In-process monitoring can reveal the presence of anomalies but creating a ML classifier requires labeled data. The present work approaches this problem by printing hundreds of Inconel-718 coupons with different processing parameters to capture a wide range of process monitoring imagery with multiple sensor types. Afterwards, the process monitoring images are encoded into feature vectors and clustered to isolate groups in each sensor modality. Four texture representations were learned by training two convolutional neural network …