Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 32

Full-Text Articles in Physical Sciences and Mathematics

Hydrodynamic Limitations To Mangrove Seedling Retention In Subtropical Estuaries, Kelly M. Kibler, Christian Pilato, Linda Walters, Melinda Donnelly, Jyotismita Taye May 2022

Hydrodynamic Limitations To Mangrove Seedling Retention In Subtropical Estuaries, Kelly M. Kibler, Christian Pilato, Linda Walters, Melinda Donnelly, Jyotismita Taye

Flow-biota Interaction and Natural Infrastructure Design

Mangrove forest sustainability hinges upon propagule recruitment and seedling retention. This study evaluates biophysical limitations to mangrove seedling persistence by measuring anchoring force of two mangrove species (Rhizophora mangle and Avicennia germinans). Anchoring force was measured in 362 seedlings via lateral pull-tests administered in mangrove forests of two subtropical estuaries and in laboratory-based experiments. Removal mechanism varied with seedling age: newly-established seedlings failed due to root pull-out while seedlings older than 3 months failed by root breakage. Anchoring force of R. mangle seedlings was consistently and significantly greater than A. germinans (GLM: p = 0.002), however force to …


Collected Papers (On Physics, Artificial Intelligence, Health Issues, Decision Making, Economics, Statistics), Volume Xi, Florentin Smarandache Jan 2022

Collected Papers (On Physics, Artificial Intelligence, Health Issues, Decision Making, Economics, Statistics), Volume Xi, Florentin Smarandache

Branch Mathematics and Statistics Faculty and Staff Publications

This eleventh volume of Collected Papers includes 90 papers comprising 988 pages on Physics, Artificial Intelligence, Health Issues, Decision Making, Economics, Statistics, written between 2001-2022 by the author alone or in collaboration with 84 co-authors from 19 countries.


Evaluating Essential Processes And Forecast Requirements For Meteotsunami-Induced Coastal Flooding, Chenfu Huang, Eric Anderson, Yi Liu, Gangfeng Ma, Greg Mann, Pengfei Xue Jan 2022

Evaluating Essential Processes And Forecast Requirements For Meteotsunami-Induced Coastal Flooding, Chenfu Huang, Eric Anderson, Yi Liu, Gangfeng Ma, Greg Mann, Pengfei Xue

Civil & Environmental Engineering Faculty Publications

Meteotsunamis pose a unique threat to coastal communities and often lead to damage of coastal infrastructure, deluge of nearby property, and loss of life and injury. The Great Lakes are a known hot-spot of meteotsunami activity and serve as an important region for investigation of essential hydrodynamic processes and model forecast requirements in meteotsunami-induced coastal flooding. For this work, we developed an advanced hydrodynamic model and evaluate key model attributes and dynamic processes, including: (1) coastal model grid resolution and wetting and drying process in low-lying zones, (2) coastal infrastructure, including breakwaters and associated submerging and overtopping processes, (3) annual/seasonal …


Complex Capillary Fluidic Phenomena For Passive Control Of Liquids In Low-Gravity Environments, Logan Torres Jan 2016

Complex Capillary Fluidic Phenomena For Passive Control Of Liquids In Low-Gravity Environments, Logan Torres

Undergraduate Research & Mentoring Program

In an effort to further apply the recent results of puddle jumping research, we seek to expand the oblique droplet impact studies of others by exploiting large liquid droplets in the near weightless environment of a drop tower. By using the spontaneous puddle jump mechanism, droplets of volumes 1 mL ≤ V ≤ 3 mL with corresponding Weber numbers of We ≈ 1 are impinged on surfaces inclined in the range 40° ≤ α ≤ 80° (measured from the horizontal plane). Impact surface wetting characteristics exhibit static contact angles θstatic = 165 ± 5°. All impacts result in complete rebound. …


Gravity Effects On Capillary Flows In Sharp Corners, Enrique Ramé, Mark M. Weislogel Apr 2009

Gravity Effects On Capillary Flows In Sharp Corners, Enrique Ramé, Mark M. Weislogel

Mechanical and Materials Engineering Faculty Publications and Presentations

We analyze the effect of gravity on capillary flows in sharp corners. We consider gravity perpendicular and parallel to the channel axis. We analyze both steady and unsteady flows. In the steady analysis the main result is a closed form expression for the flow rate as a function of the two gravity components. Good agreement with steady experiments is offered as support of the model. The unsteady analysis is restricted to “small” values of the two gravity parameters and is accomplished using a similarity formulation. The similarity coefficients of the gravity corrections are fully determined by the coefficients of the …


Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics, Samir Moujaes, Yitung Chen Jan 2005

Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics, Samir Moujaes, Yitung Chen

Transmutation Sciences Materials (TRP)

The corrosion of structural materials is a major concern for the use of lead-bismuth eutectic (LBE) systems for nuclear applications such as in transmuter targets or fast reactors. Corrosion in liquid metal systems can occur through various processes, including, for example, dissolution, formation of inter-metallic compounds at the interface, and penetration of liquid metal along grain boundaries. Predicting the rate of these processes depends on numerous system operational factors: temperature, system geometry, thermal gradients, solid and liquid compositions, and velocity of the liquid metal, to name a few. Corrosion, along with mechanical and/or hydraulic factors, often contributes to component failure. …


Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics-Task V: Trp Final Report 09/01/2003-08/31/2004, Samir Moujaes, Yitung Chen Aug 2004

Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics-Task V: Trp Final Report 09/01/2003-08/31/2004, Samir Moujaes, Yitung Chen

Transmutation Sciences Materials (TRP)

The Lead-Bismuth eutectic (LBE) has been determined from previous experimental studies by the Russians and the European scientific community to be a potential material that can be used as a spallation target and coolant for the TRP proposed application. Properly controlling the oxygen content in LBE can drastically reduce the LBE corrosion to structural steels. However, existing knowledge of material corrosion performance was obtained from point-wise testing with only very sparse experimental data. Scientists have noticed that the concentration of oxygen dissolved in the liquid alloy could control the corrosion rate of steels exposed to Pb or Pb-Bi. At high …


Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics-Task V: Fourth Quarterly Report 06/01/2004-08/31/2004, Samir Moujaes, Yitung Chen Aug 2004

Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics-Task V: Fourth Quarterly Report 06/01/2004-08/31/2004, Samir Moujaes, Yitung Chen

Transmutation Sciences Materials (TRP)

The Lead-Bismuth eutectic (LBE) has been determined from previous experimental studies by the Russians and the European scientific community to be a potential material that can be used as a spallation target and coolant for the TRP proposed application. Properly controlling the oxygen content in LBE can drastically reduce the LBE corrosion to structural steels. However, existing knowledge of material corrosion performance was obtained from point-wise testing with only very sparse experimental data. Scientists have noticed that the concentration of oxygen dissolved in the liquid alloy could control the corrosion rate of steels exposed to Pb or Pb-Bi. At high …


Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics-Task V: Third Quarterly Report 03/01/2004-05/31/2004, Samir Moujaes, Yitung Chen May 2004

Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics-Task V: Third Quarterly Report 03/01/2004-05/31/2004, Samir Moujaes, Yitung Chen

Transmutation Sciences Materials (TRP)

The Lead-Bismuth eutectic (LBE) has been determined from previous experimental studies by the Russians and the European scientific community to be a potential material that can be used as a spallation target and coolant for the TRP proposed application. Properly controlling the oxygen content in LBE can drastically reduce the LBE corrosion to structural steels. However, existing knowledge of material corrosion performance was obtained from point-wise testing with only very sparse experimental data. Scientists have noticed that the concentration of oxygen dissolved in the liquid alloy could control the corrosion rate of steels exposed to Pb or Pb-Bi. At high …


Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics-Task V: First Quarterly Report 01/12/04-02/29/04, Samir Moujaes, Yitung Chen Feb 2004

Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics-Task V: First Quarterly Report 01/12/04-02/29/04, Samir Moujaes, Yitung Chen

Transmutation Sciences Materials (TRP)

The Lead-Bismuth eutectic (LBE) has been determined from previous experimental studies by the Russians and the European scientific community to be a potential material that can be used as a spallation target and coolant for the TRP proposed application. Properly controlling the oxygen content in LBE can drastically reduce the LBE corrosion to structural steels. However, existing knowledge of material corrosion performance was obtained from point-wise testing with only very sparse experimental data. Scientists have noticed that the concentration of oxygen dissolved in the liquid alloy could control the corrosion rate of steels exposed to Pb or Pb-Bi. At high …


Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics, Samir Moujaes, Yitung Chen Jan 2004

Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics, Samir Moujaes, Yitung Chen

Transmutation Sciences Materials (TRP)

The corrosion of structural materials is a major concern for the use of lead-bismuth eutectic (LBE) systems for nuclear applications such as in transmuter targets or fast reactors. Corrosion in liquid metal systems can occur through various processes, including, for example, dissolution, formation of inter-metallic compounds at the interface, and penetration of liquid metal along grain boundaries. Predicting the rate of these processes depends on numerous system operational factors: temperature, system geometry, thermal gradients, solid and liquid compositions, and velocity of the liquid metal, to name a few. Corrosion, along with mechanical and/or hydraulic factors, often contributes to component failure. …


Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics-Task V: Fourth Quarterly Report 09/01/2003-11/30/2003, Samir Moujaes, Yitung Chen Nov 2003

Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics-Task V: Fourth Quarterly Report 09/01/2003-11/30/2003, Samir Moujaes, Yitung Chen

Transmutation Sciences Materials (TRP)

The Lead-Bismuth eutectic (LBE) has been determined from previous experimental studies by the Russians and the European scientific community to be a potential material that can be used as a spallation target and coolant for the TRP proposed application. Properly controlling the oxygen content in LBE can drastically reduce the LBE corrosion to structural steels. However, existing knowledge of material corrosion performance was obtained from point-wise testing with only very sparse experimental data. Scientists have noticed that the concentration of oxygen dissolved in the liquid alloy could control the corrosion rate of steels exposed to Pb or Pb-Bi. At high …


Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics-Task V: Fourth Quarterly Report 06/01/2003-08/30/2003, Samir Moujaes, Yitung Chen Aug 2003

Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics-Task V: Fourth Quarterly Report 06/01/2003-08/30/2003, Samir Moujaes, Yitung Chen

Transmutation Sciences Materials (TRP)

The Lead-Bismuth eutectic (LBE) has been determined from previous experimental studies by the Russians and the European scientific community to be a potential material that can be used as a spallation target and coolant for the TRP proposed application. Properly controlling the oxygen content in LBE can drastically reduce the LBE corrosion to structural steels. However, existing knowledge of material corrosion performance was obtained from point-wise testing with only very sparse experimental data. Scientists have noticed that the concentration of oxygen dissolved in the liquid alloy could control the corrosion rate of steels exposed to Pb or Pb-Bi. At high …


Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics-Task V: Annual Report -Phase Ii 09/01/2002-08/30/2003, Samir Moujaes, Yitung Chen Aug 2003

Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics-Task V: Annual Report -Phase Ii 09/01/2002-08/30/2003, Samir Moujaes, Yitung Chen

Transmutation Sciences Materials (TRP)

The Lead-Bismuth eutectic (LBE) has been determined from previous experimental studies by the Russians and the European scientific community to be a potential material that can be used as a spallation target and coolant for the TRP proposed application. Properly controlling the oxygen content in LBE can drastically reduce the LBE corrosion to structural steels. However, existing knowledge of material corrosion performance was obtained from point-wise testing with only very sparse experimental data. Scientists have noticed that the concentration of oxygen dissolved in the liquid alloy could control the corrosion rate of steels exposed to Pb or Pb-Bi. At high …


Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics - Phase Three, Samir Moujaes, Yitung Chen Aug 2003

Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics - Phase Three, Samir Moujaes, Yitung Chen

Transmutation Sciences Materials (TRP)

The proposed work will combine chemical kinetics and hydrodynamics in target and test-loop lead-bismuth eutectic (LBE) systems to model system corrosion effects. This approach will result in a predicative tool that can be validated with corrosion test data, used to systematically design tests and interpret the results, and provide guidance for optimization in LBE system designs. The task includes two subtasks. The first subtask is to try to develop the necessary predictive tools to be able to predict the levels of oxygen and corrosion products close to the boundary layer through the use of Computational Fluid Dynamics (CFD) modeling. The …


Quarterly Report For The Trp Project, March–June 2003, Samir Moujaes, Yitung Chen, Kanthi Kiran Daiska, Chao Wu Jun 2003

Quarterly Report For The Trp Project, March–June 2003, Samir Moujaes, Yitung Chen, Kanthi Kiran Daiska, Chao Wu

Transmutation Sciences Materials (TRP)

The MTL is assumed to be a 5m long rectangular loop with a circular cross-section. Because of the non-symmetry, and due to the active participation of the secondary flows due to the elbows present in the rectangular loop model, the geometry is considered as a 3D model.

When the regions of maximum corrosion and precipitation are compared, they fall in the same zone for both the analytical and simulated models. The reason for a larger concentration flux in the case of turbulent flow than for the laminar flow can be explained by the concept of higher lateral diffusion in the …


Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics: Quarterly Progress Report 12/1/02- 2/28/03, Samir Moujaes, Yitung Chen Feb 2003

Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics: Quarterly Progress Report 12/1/02- 2/28/03, Samir Moujaes, Yitung Chen

Transmutation Sciences Materials (TRP)

The Lead-Bismuth eutectic (LBE) has been determined from previous experimental studies by the Russians and the European scientific community to be a potential material that can be used as a spallation target and coolant for the AAA proposed application.

Properly controlling the oxygen content in LBE can drastically reduce the LBE corrosion to structural steels. However, existing knowledge of material corrosion performance was obtained from point-wise testing with very limited density. The transport of oxygen and corrosion products, their interaction and variation of corrosion/precipitation along the flow are not well understood.

The first subtask of this project involves using a …


Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics, Samir Moujaes, Yitung Chen Jan 2003

Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics, Samir Moujaes, Yitung Chen

Transmutation Sciences Materials (TRP)

The corrosion of structural materials is a major concern for the use of lead-bismuth eutectic (LBE) systems for nuclear applications such as in transmuter targets or fast reactors. Corrosion in liquid metal systems can occur through various processes, including, for example, dissolution, formation of inter-metallic compounds at the interface, and penetration of liquid metal along grain boundaries. Predicting the rate of these processes depends on numerous system operational factors: temperature, system geometry, thermal gradients, solid and liquid compositions, and velocity of the liquid metal, to name a few. Corrosion, along with mechanical and/or hydraulic factors, often contributes to component failure. …


Modeling Of Corrosion In Oxygen Controlled Lead Bismuth Eutectic Systems With The Coupling Of Chemical Kinetics And Hydrodynamics, Samir Moujaes, Yitung Chen, Kanthi Kiran Dasika, Chao Wu Jan 2003

Modeling Of Corrosion In Oxygen Controlled Lead Bismuth Eutectic Systems With The Coupling Of Chemical Kinetics And Hydrodynamics, Samir Moujaes, Yitung Chen, Kanthi Kiran Dasika, Chao Wu

Transmutation Sciences Materials (TRP)

Objectives:

  • To simulate a 2-D model of the Materials Test Loop by approximating it to be a toroid with a pie cross section for the purpose of comparing the simulated results with the analytical results.
  • The temperature and concentration profiles on the wall boundaries imposed are similar to the actual test model.
  • Geometry effects have great influence on local corrosion rate.
  • A 2-D benchmark problem and a sudden expansion case are studied which show good consistency to analytical solution.
  • Results from 2-D sudden expansion problem are similar to experimental data obtained by other researchers.


Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics-Task V: Final Report -Phase I 09/01/2001-08/30/2002, Samir Moujaes, Yitung Chen Aug 2002

Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics-Task V: Final Report -Phase I 09/01/2001-08/30/2002, Samir Moujaes, Yitung Chen

Transmutation Sciences Materials (TRP)

The Lead-Bismuth eutectic (LBE) has been determined from previous experimental studies by the Russians and the European scientific community to be a potential material that can be used as a spallation target and coolant for the AAA proposed application. Properly controlling the oxygen content in LBE can drastically reduce the LBE corrosion to structural steels. However, existing knowledge of material corrosion performance was obtained from point-wise testing with only very sparse experimental data. Scientists have noticed that the concentration of oxygen dissolved in the liquid alloy could control the corrosion rate of steels exposed to Pb or Pb-Bi. At high …


Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics: Quarterly Progress Report 03/16/02- 06/15/02, Samir Moujaes, Yitung Chen Jun 2002

Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics: Quarterly Progress Report 03/16/02- 06/15/02, Samir Moujaes, Yitung Chen

Transmutation Sciences Materials (TRP)

The Lead-Bismuth eutectic (LBE) has been determined from previous experimental studies by the Russians and the European scientific community to be a potential material that can be used as a spallation target and coolant for the AAA proposed application. Properly controlling the oxygen content in LBE can drastically reduce the LBE corrosion to structural steels. However, existing knowledge of material corrosion performance was obtained from point-wise testing with very limited density. Scientists have noticed that the concentration of oxygen dissolved in the liquid alloy could control the corrosion rate of steels exposed to Pb or Pb-Bi. At high oxygen concentration, …


Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics-Phase Two, Samir Moujaes, Yitung Chen May 2002

Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics-Phase Two, Samir Moujaes, Yitung Chen

Transmutation Sciences Materials (TRP)

The proposed work will combine chemical kinetics and hydrodynamics in target and test-loop lead-bismuth eutectic (LBE) systems to model system corrosion effects. This approach will result in a predicative tool that can be validated with corrosion test data, used to systematically design tests and interpret the results, and provide guidance for optimization in LBE system designs. The task includes two subtasks. The first subtask is to try to develop the necessary predictive tools to be able to predict the levels of oxygen and corrosion products close to the boundary layer through the use of Computational Fluid Dynamics (CFD) modeling. The …


Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics: Quarterly Progress Report 11/16/01- 2/15/02, Samir Moujaes, Yitung Chen Feb 2002

Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics: Quarterly Progress Report 11/16/01- 2/15/02, Samir Moujaes, Yitung Chen

Transmutation Sciences Materials (TRP)

The Lead-Bismuth eutectic (LBE) has been determined from previous experimental studies by the Russians and the European scientific community to be a potential material that can be used as a spallation target and coolant for the AAA proposed application.

Properly controlling the oxygen content in LBE can drastically reduce the LBE corrosion to structural steels. However, existing knowledge of material corrosion performance was obtained from point-wise testing with very limited density. The transport of oxygen and corrosion products, their interaction and variation of corrosion/precipitation along the flow are not well understood.

The first subtask of this project involves using a …


Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics: Task V 4th Quarterly Report, Samir Moujaes Jan 2002

Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics: Task V 4th Quarterly Report, Samir Moujaes

Transmutation Sciences Materials (TRP)

The project is moving on target with the newly realigned objective set for the Phase I. Through close communications with Dr. Li and Dr. Jinsuo Zhang from LANL a realignment of the simulation work has been recommended. The reason for that is the vendor of STAR-CD/CHEMKIN had not perfected yet the final coupling of the post processing of output for any potential surface chemistry reaction taking place on the inside pipe surface of the LBE loop. This is because the coupling of CHEMKIN and STAR-CD has been done fairly recently.

Our final effort has been to generate using an innovative …


Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics, Samir Moujaes, Yitung Chen Jan 2002

Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics, Samir Moujaes, Yitung Chen

Transmutation Sciences Materials (TRP)

Many of the international efforts to develop transmutation technology, including the U.S., Russian, and European scientific communities, have determined that lead bismuth eutectic (LBE) is a potential material for use as a both a spallation target and a coolant. To exploit this potential, a more thorough understanding of the effect and rates of corrosion on steels, particularly non-Russian alloys, inside the LBE systems is required. Properly controlling the oxygen content in LBE systems has been observed to drastically reduce the corrosion of structural steels in LBE. However, the transport of oxygen and formation of corrosion products is not well understood; …


Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics: Quarterly Progress Report August 16,2001- November 15, 2001, Samir Moujaes, Yitung Chen Nov 2001

Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics: Quarterly Progress Report August 16,2001- November 15, 2001, Samir Moujaes, Yitung Chen

Transmutation Sciences Materials (TRP)

The Lead-Bismuth eutectic (LBE) has been determined from previous experimental studies by the Russians and the European scientific community to be a potential material that can be used as a spallation target and coolant for the AAA proposed application.

Properly controlling the oxygen content in LBE can drastically reduce the LBE corrosion to structural steels. However, existing knowledge of material corrosion performance was obtained from point-wise testing with very limited density. The transport of oxygen and corrosion products, their interaction and variation of corrosion/precipitation along the flow are not well understood.

The first subtask of this project involves using a …


Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics, Samir Moujaes, Yitung Chen Aug 2001

Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics, Samir Moujaes, Yitung Chen

Transmutation Sciences Materials (TRP)

The proposed work will combine chemical kinetics and hydrodynamics in target and test-loop lead-bismuth eutectic (LBE) systems to model system corrosion effects. This approach will result in a predicative tool that can be validated with corrosion test data, used to systematically design tests and interpret the results, and provide guidance for optimization in LBE system designs. The task includes of two subtasks. The first subtask is to try to develop the necessary predictive tools to be able to predict the levels of oxygen and corrosion products close to the boundary layer through the use of Computational Fluid Dynamics (CFD) modeling. …


Physical Data, Anon. Jun 1987

Physical Data, Anon.

Publications (WR)

Data collected at various stations around the Lake Mead vicinity. Air temperature, lake elevation, weather, and wind velocity is recorded, as well as the depth, temperature, oxygen, conductivity, and pH. Standard.


Evaluation Of Impacts Associated With Reregulation Of Water Levels In Lake Mohave, Larry J. Paulson, John R. Baker, U.S. Water And Power Resources Service Mar 1980

Evaluation Of Impacts Associated With Reregulation Of Water Levels In Lake Mohave, Larry J. Paulson, John R. Baker, U.S. Water And Power Resources Service

Publications (WR)

The U.S. Water and Power Resources Service is considering reregulating Lake Mohave water levels to increase the net power benefit from Hoover Dam. Reregulation will not increase the generation capacity of the Hoover powerplant but it will enable the plant operation to be increased when the energy has greater monetary value. Energy generated at different times of the year has different market value, the highest being in January-March and July- September. By generating more power during these periods more net monetary benefit can be derived from Hoover Dam. The total volume of water released from Hoover Dam over an annual …


Evaluation Of Possible Temperature Fluctuations From Proposed Power Modifications At Hoover Dam, Larry J. Paulson, John R. Baker, U.S. Water And Power Resources Service Mar 1980

Evaluation Of Possible Temperature Fluctuations From Proposed Power Modifications At Hoover Dam, Larry J. Paulson, John R. Baker, U.S. Water And Power Resources Service

Publications (WR)

There are several planned alternatives for increasing the generation capacity of Hoover Dam to help meet peak power demands. These alternatives include: (a) uprating the existing generating units, (b) replacing or adding one or more generating units and (c) adding reversible pumped-storage hydroelectric units. Since the existing generators are at the end of their economic life and have to be replaced, their uprating has been scheduled as routine maintenance. This will increase the generating capacity of the Hoover Dam powerplant from 1240 MW to 1810 MW, but the anticipated capacity for meeting power demand is 2300 MW. Therefore, modifications (alternatives …