Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Electric Currents Due To Stress-Activated Positive Hole Charge Carriers In Ice, Cary T. Keller P.E., Friedemann T. Freund, Dale P. Cruikshank Aug 2012

Electric Currents Due To Stress-Activated Positive Hole Charge Carriers In Ice, Cary T. Keller P.E., Friedemann T. Freund, Dale P. Cruikshank

STAR Program Research Presentations

Jupiter’s satellite Europa, whose surface is composed of ice with a possible water ocean beneath, could conceivably serve as an abode for extraterrestrial life. This and other icy celestial bodies may contain organic macromolecular solid material that is produced when surface ices are exposed to ultraviolet radiation and/or electrical energy. Tidal and tectonic stresses or meteorite impacts in icy crusts may produce electrical discharges, which would provide the energy for in-situ synthesis of the organic solids. This electrical energy can be provided by positive hole charge carrier activation. Positive holes exhibit properties such as the ability to flow out of …


Investigation Of Spillover Effect To Enhance Hydrogen Storage, Sarah C. Corrigan, Lin Simpson, Thomas Gennett Aug 2012

Investigation Of Spillover Effect To Enhance Hydrogen Storage, Sarah C. Corrigan, Lin Simpson, Thomas Gennett

STAR Program Research Presentations

Hydrogen is an attractive energy option because of its low
environmental impact, but a critical problem is its low energy
density, which makes it difficult to store. For example, the US
Department of Energy (DOE) hydrogen plan for fuel cell powered
vehicles requires a gravimetric density of 6.5 wt%. There are several
existing hydrogen storage methods, including compressed gas,
liquefaction, metal hydrides, and physisorption, but at present, none
of these technologies comes close to achieving the targets set by the
DOE. Although chemical storage methods have been claimed to be the
most promising hydrogen storage technology, and activated carbons the …


Telescope Assembly Alignment Simulator Performance Optimization, Joshua G. Thompson, Brian Eney, Zaheer Ali, Bob Thompson Aug 2012

Telescope Assembly Alignment Simulator Performance Optimization, Joshua G. Thompson, Brian Eney, Zaheer Ali, Bob Thompson

STAR Program Research Presentations

The Telescope Assembly Alignment Simulator (TAAS) calibrates scientific instruments (SI’s) that are installed on the Stratospheric Observatory For Infrared Astronomy (SOFIA). An SI’s accuracy is directly dependent on the consistent performance of the TAAS, which has never been fully characterized. After designing various thermal and optical experiments to identify the current unknowns of TAAS, we now have a far better grasp on how the equipment behaves.


Commissioning Of The Asta Laser Lab With Uv Pulse Length Characterization, Daniel Kelley, Jeff Corbett Aug 2012

Commissioning Of The Asta Laser Lab With Uv Pulse Length Characterization, Daniel Kelley, Jeff Corbett

STAR Program Research Presentations

The Linac Coherent Light Source (LCLS) at SLAC depends on a photocathode electron gun to provide the linear accelerator with the raw material – electrons – used for making X-ray laser pulses. The photocathode used in the LCLS Injector is a clean copper plate in high vacuum. When the cathode is struck with high energy UV light, electrons are liberated from its surface and then accelerated down the linac with radio-frequency electric fields. These fast-moving bunches of electrons are directed through an undulator magnet to radiate X-ray light.

Although scientists have been using photocathode techniques at SLAC for 25 years, …