Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Engineering

Journal of Electrochemistry

2020

Oxygen evolution reaction

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Recent Progress In Bifunctional Catalysts For Zinc-Air Batteries, Neng-Neng Xu, Jin-Li Qiao Aug 2020

Recent Progress In Bifunctional Catalysts For Zinc-Air Batteries, Neng-Neng Xu, Jin-Li Qiao

Journal of Electrochemistry

Zinc-air battery has attracted great attention from researchers due to its high energy density and power density, which is expected to be widely used in energy conversion and storage. Air electrode as the core area of oxygen catalytic reaction is the focus of the entire zinc-air battery research. Recently, many research achievements have been made in non-noble metal bifunctional catalysts/electrodes with high activity, low cost and abundant species. In this review, we mainly focus on the reaction mechanism and the recent progress in non-noble metal oxide catalyst, carbon-based catalyst, and carbon-based transition metal compound composite and self-supporting electrode. In addition, …


Preparations Of Nickel-Iron Hydroxide/Sulfide And Their Electrocatalytic Performances For Overall Water Splitting, Hang-Shuo Lu, Xiao-Bo He, Feng-Xiang Yin, Guo-Ru Li Feb 2020

Preparations Of Nickel-Iron Hydroxide/Sulfide And Their Electrocatalytic Performances For Overall Water Splitting, Hang-Shuo Lu, Xiao-Bo He, Feng-Xiang Yin, Guo-Ru Li

Journal of Electrochemistry

The Ni-Fe/Ti oxygen evolution electrode was prepared by electrodeposition on a titanium mesh substrate. Then, the as prepared Ni-Fe/Ti electrode was used to derive the Ni-Fe-S/Ti hydrogen evolution electrode through solid phase sulfuration. The effects of the molar ratio of Ni 2+ to Fe 3+ in the electrolyte and the amount of thiourea on the structures and electrochemical performances of Ni-Fe/Ti and Ni-Fe-S/Ti electrodes were investigated. The results show that the oxygen evolution performance of Ni-Fe/Ti electrode was first increased and then decreased with the increase of nickel ion content in the electrolyte. The Ni9Fe1/Ti electrode exhibited the best oxygen …