Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Engineering

Electronic Theses and Dissertations

Wavelets

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Hybrid Power Spectral And Wavelet Image Roughness Analysis, Basel White May 2023

Hybrid Power Spectral And Wavelet Image Roughness Analysis, Basel White

Electronic Theses and Dissertations

The Two-Dimensional Wavelet Transform Modulus Maxima (2D WTMM) sliding window methodology has proven to be a robust approach, in particular for the extraction of the Hurst (H) roughness exponent from grayscale mammograms. The power spectrum is a computational analysis based on the Fourier transform that can be used to estimate the roughness of a scale-invariant image or region via the calculation of H. We aim to examine how the calculation of H in fractional Brownian motion (fBm) images and mammograms can be improved. fBm images are generated for H ∈ [0.00,1.00] for testing through the previous 2D …


Longitudinal Tracking Of Physiological State With Electromyographic Signals., Robert Warren Stallard May 2018

Longitudinal Tracking Of Physiological State With Electromyographic Signals., Robert Warren Stallard

Electronic Theses and Dissertations

Electrophysiological measurements have been used in recent history to classify instantaneous physiological configurations, e.g., hand gestures. This work investigates the feasibility of working with changes in physiological configurations over time (i.e., longitudinally) using a variety of algorithms from the machine learning domain. We demonstrate a high degree of classification accuracy for a binary classification problem derived from electromyography measurements before and after a 35-day bedrest. The problem difficulty is increased with a more dynamic experiment testing for changes in astronaut sensorimotor performance by taking electromyography and force plate measurements before, during, and after a jump from a small platform. A …


Real-Time Cinematic Design Of Visual Aspects In Computer-Generated Images, Juraj Obert Jan 2010

Real-Time Cinematic Design Of Visual Aspects In Computer-Generated Images, Juraj Obert

Electronic Theses and Dissertations

Creation of visually-pleasing images has always been one of the main goals of computer graphics. Two important components are necessary to achieve this goal --- artists who design visual aspects of an image (such as materials or lighting) and sophisticated algorithms that render the image. Traditionally, rendering has been of greater interest to researchers, while the design part has always been deemed as secondary. This has led to many inefficiencies, as artists, in order to create a stunning image, are often forced to resort to the traditional, creativity-baring, pipelines consisting of repeated rendering and parameter tweaking. Our work shifts the …


Phase-Shifting Haar Wavelets For Image-Based Rendering Applications, Mais Alnasser Jan 2008

Phase-Shifting Haar Wavelets For Image-Based Rendering Applications, Mais Alnasser

Electronic Theses and Dissertations

In this thesis, we establish the underlying research background necessary for tackling the problem of phase-shifting in the wavelet transform domain. Solving this problem is the key to reducing the redundancy and huge storage requirement in Image-Based Rendering (IBR) applications, which utilize wavelets. Image-based methods for rendering of dynamic glossy objects do not truly scale to all possible frequencies and high sampling rates without trading storage, glossiness, or computational time, while varying both lighting and viewpoint. This is due to the fact that current approaches are limited to precomputed radiance transfer (PRT), which is prohibitively expensive in terms of memory …


Wavelets In Real-Time Rendering, Weifeng Sun Jan 2006

Wavelets In Real-Time Rendering, Weifeng Sun

Electronic Theses and Dissertations

Interactively simulating visual appearance of natural objects under natural illumination is a fundamental problem in computer graphics. 3D computer games, geometry modeling, training and simulation, electronic commerce, visualization, lighting design, digital libraries, geographical information systems, economic and medical image processing are typical candidate applications. Recent advances in graphics hardware have enabled real-time rasterization of complex scenes under artificial lighting environment. Meanwhile, pre-computation based soft shadow algorithms are proven effective under low-frequency lighting environment. Under the most practical yet popular all-frequency natural lighting environment, however, real-time rendering of dynamic scenes still remains a challenging problem. In this dissertation, we propose a …