Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Engineering

University of Wollongong

Australian Institute for Innovative Materials - Papers

Doped

Articles 1 - 30 of 38

Full-Text Articles in Physical Sciences and Mathematics

Coupling Topological Insulator Snsb2te4 Nanodots With Highly Doped Graphene For High-Rate Energy Storage, Zhibin Wu, Gemeng Liang, Wei Kong Pang, Tengfei Zhou, Zhenxiang Cheng, Wenchao Zhang, Ye Liu, Bernt Johannessen, Zaiping Guo Jan 2019

Coupling Topological Insulator Snsb2te4 Nanodots With Highly Doped Graphene For High-Rate Energy Storage, Zhibin Wu, Gemeng Liang, Wei Kong Pang, Tengfei Zhou, Zhenxiang Cheng, Wenchao Zhang, Ye Liu, Bernt Johannessen, Zaiping Guo

Australian Institute for Innovative Materials - Papers

Topological insulators have spurred worldwide interest, but their advantageous properties have scarcely been explored in terms of electrochemical energy storage, and their high-rate capability and long-term cycling stability still remain a significant challenge to harvest. p-Type topological insulator SnSb2Te4 nanodots anchoring on few-layered graphene (SnSb2Te4/G) are synthesized as a stable anode for high-rate lithium-ion batteries and potassium-ion batteries through a ball-milling method. These SnSb2Te4/G composite electrodes show ultralong cycle lifespan (478 mAh g−1 at 1 A g−1 after 1000 cycles) and excellent rate capability (remaining 373 mAh g−1 even at 10 A g−1) in Li-ion storage owing to the rapid …


Iron And Nickel Doped Cose2 As Efficient Non Precious Metal Catalysts For Oxygen Reduction, Beibei Yu, Jiayi Jin, Huimin Wu, Shengfu Wang, Qinghua Xia, Hua-Kun Liu Jan 2017

Iron And Nickel Doped Cose2 As Efficient Non Precious Metal Catalysts For Oxygen Reduction, Beibei Yu, Jiayi Jin, Huimin Wu, Shengfu Wang, Qinghua Xia, Hua-Kun Liu

Australian Institute for Innovative Materials - Papers

Iron and nickel doped CoSe2 were prepared by solvothermal method, and they were proved to be ternary chalcogenides by series of physical characterization. The effects of the iron and nickel contents on the oxygen reduction reaction were investigated by electrochemical measurements, and the highest activities were obtained on Co0.7Fe0.3Se2 and Co0.7Ni0.3Se2, respectively. Both Co0.7Fe0.3Se2 and Co0.7Ni0.3Se2 presented four-electron pathway. Furthermore, Co0.7Fe0.3Se2 exhibited more positive cathodic peak potential (0.564 V) and onset potential (0.759 V) than these of Co0.7Ni0.3Se2 (0.558 V and 0.741 V). And Co0.7Fe0.3Se2 displayed even superior stability and better tolerance to methanol, ethanol and ethylene glycol crossover effects …


Correlation Of Impedance And Effective Electrode Area Of Dextran Sulfate Doped Pedot Modified Electrodes, Alexander R. Harris, Robyn C. Hutchinson, Paul J. Molino, Robert M. I Kapsa, Graeme M. Clark, Antonio G. Paolini, Gordon G. Wallace Jan 2016

Correlation Of Impedance And Effective Electrode Area Of Dextran Sulfate Doped Pedot Modified Electrodes, Alexander R. Harris, Robyn C. Hutchinson, Paul J. Molino, Robert M. I Kapsa, Graeme M. Clark, Antonio G. Paolini, Gordon G. Wallace

Australian Institute for Innovative Materials - Papers

The impedance of electrodes at 1 kHz is typically reported to assess the signal-to-noise ratio of neural recording electrodes. The impedance response of platinum electrodes modified by poly-3,4-ethylenedioxythiophene doped with dextran sulfate has been examined. The modified electrodes have lower impedance at low and intermediate frequencies compared to unmodified electrodes. The impedance and phase angle at low frequencies is strongly correlated with the electrode area. The geometric and linear diffusion charge densities of the modified electrodes are also dependent on the electrode area and impedance at low frequencies. A 3 time constant equivalent circuit provided a better fit to the …


Manipulating Coupling State And Magnetism Of Mn-Doped Zno Nanocrystals By Changing The Coordination Environment Of Mn Via Hydrogen Annealing, Yan Cheng, W Li, Weichang Hao, Huaizhe Xu, Zhongfei Xu, Li Rong Zheng, Jing Zhang, S X. Dou, Tianmin Wang Jan 2016

Manipulating Coupling State And Magnetism Of Mn-Doped Zno Nanocrystals By Changing The Coordination Environment Of Mn Via Hydrogen Annealing, Yan Cheng, W Li, Weichang Hao, Huaizhe Xu, Zhongfei Xu, Li Rong Zheng, Jing Zhang, S X. Dou, Tianmin Wang

Australian Institute for Innovative Materials - Papers

Mn-doped ZnO nanocrystals are synthesized by a wet chemical route and treated in H2/Ar atmosphere with different H2/Ar ratios. It is found that hydrogen annealing could change the coordination environment of Mn in ZnO lattice and manipulate the magnetic properties of Mn-doped ZnO. Mn ions initially enter into interstitial sites and a Mn3+O6 octahedral coordination is produced in the prepared Mn-doped ZnO sample, in which the nearest neighbor Mn3+ and O2 ions could form a Mn3+-O2--Mn3+ complex. After H2 annealing, interstitial Mn ions can substitute for Zn to generate the Mn2+O4 tetrahedral coordination in the nanocrystals, in which neighboring Mn2+ …


Superior Sodium-Ion Storage Performance Of Co3o4@Nitrogen-Doped Carbon: Derived From A Metal–Organic Framework, Ying Wang, Caiyun Wang, Yijing Wang, Hua-Kun Liu, Zhenguo Huang Jan 2016

Superior Sodium-Ion Storage Performance Of Co3o4@Nitrogen-Doped Carbon: Derived From A Metal–Organic Framework, Ying Wang, Caiyun Wang, Yijing Wang, Hua-Kun Liu, Zhenguo Huang

Australian Institute for Innovative Materials - Papers

Nitrogen-doped carbon coated Co 3 O 4 nanoparticles (Co 3 O 4 @NC) with high Na-ion storage capacity and unprecedented long-life cycling stability are reported in this paper. The Co 3 O 4 @NC was derived from a metal – organic framework ZIF-67, where the Co ions and organic linkers were, respectively, converted to Co 3 O 4 nanoparticle cores and nitrogen-doped carbon shells through a controlled two-step annealing process. The Co 3 O 4 @NC shows a porous nature with a surface area of 101 m 2 g 1 . When applied as an anode for sodium ion batteries …


Study Of Flux Pinning Mechanism Under Hydrostatic Pressure In Optimally Doped (Ba,K)Fe2as2 Single Crystals, Babar Shabbir, Xiaolin Wang, Yanwei Ma, S X. Dou, Shi-Shen Yan, Liang-Mo Mei Jan 2016

Study Of Flux Pinning Mechanism Under Hydrostatic Pressure In Optimally Doped (Ba,K)Fe2as2 Single Crystals, Babar Shabbir, Xiaolin Wang, Yanwei Ma, S X. Dou, Shi-Shen Yan, Liang-Mo Mei

Australian Institute for Innovative Materials - Papers

Strong pinning depends on the pinning force strength and number density of effective defects. Using the hydrostatic pressure method, we demonstrate here that hydrostatic pressure of 1.2 GPa can significantly enhance flux pinning or the critical current density (Jc) of optimally doped Ba0.6K0.4Fe2As2 crystals by a factor of up to 5 in both low and high fields, which is generally rare with other Jc enhancement techniques. At 4.1 K, high pressure can significantly enhance Jc from 5 x 105 A/cm2 to nearly 106 A/cm2 at 2 T, and from 2 x 105 A/cm2 to nearly 5.5 x 105 A/cm2 at …


Effective Area And Charge Density Of Chondroitin Sulphate Doped Pedot Modified Electrodes, Alexander R. Harris, Paul J. Molino, Antonio G. Paolini, Gordon G. Wallace Jan 2016

Effective Area And Charge Density Of Chondroitin Sulphate Doped Pedot Modified Electrodes, Alexander R. Harris, Paul J. Molino, Antonio G. Paolini, Gordon G. Wallace

Australian Institute for Innovative Materials - Papers

Neural electrodes have been coated with electrodeposited poly-3,4-ethylenedioxythiophene doped with chondroitin sulphate. Optical and electrochemical methods were used to determine the effective electrode area, charge injection capacity and charge density of the modified electrodes. Deposition times of 15 to 60 s slightly increased the geometric and steady state diffusion electroactive areas while the linear diffusion electroactive area grew significantly, indicating an increase in electrode roughness. The effective electrode area and charge injection capacity were significantly smaller than PEDOT doped with previously tested dopants. In contrast to other dopant ions, the charge density determined from the geometric and steady state diffusion …


N-Doped Crumpled Graphene Derived From Vapor Phase Deposition Of Ppy On Graphene Aerogel As An Efficient Oxygen Reduction Reaction Electrocatalyst, Meng Wang, Jiazhao Wang, Yuyang Hou, Dongqi Shi, David Wexler, Simon D. Poynton, Robert C.T. Slade, Weimin Zhang, Hua-Kun Liu, Jun Chen Jan 2015

N-Doped Crumpled Graphene Derived From Vapor Phase Deposition Of Ppy On Graphene Aerogel As An Efficient Oxygen Reduction Reaction Electrocatalyst, Meng Wang, Jiazhao Wang, Yuyang Hou, Dongqi Shi, David Wexler, Simon D. Poynton, Robert C.T. Slade, Weimin Zhang, Hua-Kun Liu, Jun Chen

Australian Institute for Innovative Materials - Papers

Nitrogen-doped crumpled graphene (NCG) is successfully synthesized via vapor phase deposition of polypyrrole onto graphene aerogel followed by thermal treatment. The NCG was explored as an electrocatalyst for the oxygen reduction reaction, showing comparable electrocatalytic performance with the commercial Pt/C in alkaline membrane exchange fuel cells because of the well-regulated nitrogen doping and the robust micro-3D crumpled porous nanostructure.


Synthesis Of Nitrogen-Doped Graphene Via Thermal Treatment Of Graphene Oxide Within Methylimidazole And Its Capacitance Performance As Electric Double Layer Capacitor, Md. Monirul Islam, Shaikh Nayeem Faisal, Anup Kumar Roy, Sonia Ansari, Dean Cardillo, Konstantin K. Konstantinov, Enamul Haque Jan 2015

Synthesis Of Nitrogen-Doped Graphene Via Thermal Treatment Of Graphene Oxide Within Methylimidazole And Its Capacitance Performance As Electric Double Layer Capacitor, Md. Monirul Islam, Shaikh Nayeem Faisal, Anup Kumar Roy, Sonia Ansari, Dean Cardillo, Konstantin K. Konstantinov, Enamul Haque

Australian Institute for Innovative Materials - Papers

Nitrogen-doped graphene was successfully synthesised from graphene oxide (GO) and 2-methylimidazole composite via thermal treatment under argon flow at 700oC within 1h. This synthesised N-doped graphene exhibits homogeneous nitrogen doping with concentration of ~5% in three different nitrogen configuration namelypyridinic N, pyrrolic N and graphitic N. The electric double layer capacitor (EDLC) made up with this N-doped graphene showed excellent specific capacitance 274 F/g at current density of 1A/g, which was ~7 times higher than GO. This EDLC capacitor showed excellent cyclic stability up to 5000 cycles with capacity retention of ~91%.


Mass Acquisition Of Dirac Fermions In Magnetically Doped Topological Insulator Sb2te3 Films, Yeping Jiang, Canli Song, Zhi Li, Mu Chen, Richard L. Greene, Ke He, Lili Wang, Xiaowei Chen, Xu-Cun Ma, Qi-Kun Xue Jan 2015

Mass Acquisition Of Dirac Fermions In Magnetically Doped Topological Insulator Sb2te3 Films, Yeping Jiang, Canli Song, Zhi Li, Mu Chen, Richard L. Greene, Ke He, Lili Wang, Xiaowei Chen, Xu-Cun Ma, Qi-Kun Xue

Australian Institute for Innovative Materials - Papers

We report on the mass acquisition of Dirac fermions by doping Cr into the topmost quintuple layer or into the bulk of Sb2Te3 topological insulator films. By careful investigation of the scanning tunneling microscopy/spectroscopy on the films, we find that the Landau level spectrum keeps a good quality even at a high Cr-doping level, enabling a demonstration of deviation of the zeroth Landau level, induced by the acquisition of a mass term in the surface states in the presence of surface or bulk magnetic doping. The magnitude of the mass term in the surface states increases with increasing Cr-doping level. …


Manganese Dioxide-Anchored Three-Dimensional Nitrogen-Doped Graphene Hybrid Aerogels As Excellent Anode Materials For Lithium Ion Batteries, Zhu Yin Sui, Caiyun Wang, Kewei Shu, Quan-Sheng Yang, Yu Ge, Gordon G. Wallace, Bao Hang Han Jan 2015

Manganese Dioxide-Anchored Three-Dimensional Nitrogen-Doped Graphene Hybrid Aerogels As Excellent Anode Materials For Lithium Ion Batteries, Zhu Yin Sui, Caiyun Wang, Kewei Shu, Quan-Sheng Yang, Yu Ge, Gordon G. Wallace, Bao Hang Han

Australian Institute for Innovative Materials - Papers

The capacity of manganese dioxide (MnO2) deteriorates with cycling due to the irreversible changes induced by the repeated lithiation and delithiation processes. To overcome this drawback, MnO2/nitrogen-doped graphene hybrid aerogels (MNGAs) were prepared via a facile redox process between KMnO4 and carbon within nitrogen-doped graphene hydrogels. The three-dimensional nitrogen-doped graphene hydrogels were prepared and utilized as matrices for MnO2 deposition. The MNGAs-120 obtained after a deposition time of 120 min delivered a very high discharge capacity of 909 mA h g-1 after 200 cycles at a current density of 400 mA g-1 …


Role Of Anions On Structure And Pseudocapacitive Performance Of Metal Double Hydroxides Decorated With Nitrogen-Doped Graphene, Nasir Mahmood, Muhammad Nawaz Tahir, Asif Mahmood, Wenlong Yang, Xingxing Gu, Chuanbao Cao, Yawen Zhang, Yanglong Hou Jan 2015

Role Of Anions On Structure And Pseudocapacitive Performance Of Metal Double Hydroxides Decorated With Nitrogen-Doped Graphene, Nasir Mahmood, Muhammad Nawaz Tahir, Asif Mahmood, Wenlong Yang, Xingxing Gu, Chuanbao Cao, Yawen Zhang, Yanglong Hou

Australian Institute for Innovative Materials - Papers

Electrochemical capacitors (EC) bear faster charge-discharge; however, their real applications are still on a long away due to lower capacitance and energy densities which mainly arise from simple surface charge accumulation or/and reaction. Here, a novel synthesis strategy was designed to obtain the purposeful hybrids of nickel cobalt double hydroxide (NiCoDH) with genetic morphology to improve their electrochemical performance as electrode of EC. Nanostructures of metal hydroxides were grown on t he nitrogen-doped graphene (NG) sheets by utilizing defects as nucleation sites and their composition was optimized both by tuning the ratio of Ni:Co as well as the counter halogen …


Photocatalytic Degradation Of Methyl Orange By Ceo2 And Fe-Doped Ceo2 Films Under Visible Light Irradiation, D Channei, B Inceesungvorn, N Wetchakun, S Ukritnukun, Andrew Nattestad, Jun Chen, S Phanichphant Jan 2014

Photocatalytic Degradation Of Methyl Orange By Ceo2 And Fe-Doped Ceo2 Films Under Visible Light Irradiation, D Channei, B Inceesungvorn, N Wetchakun, S Ukritnukun, Andrew Nattestad, Jun Chen, S Phanichphant

Australian Institute for Innovative Materials - Papers

Undoped CeO2 and 0.50-5.00 mol% Fe-doped CeO2 nanoparticles were prepared by a homogeneous precipitation combined with homogeneous/impreganation method, and applied as photocatalyst films prepared by a doctor blade technique. The superior photocatalytic performances of the Fe-doped CeO2 films, compared with undoped CeO2 films, was ascribed mainly to a decrease in band gap energy and an increase in specific surface area of the material. The presence of Fe3+ as found from XPS analysis, may act as electron acceptor and/or hole donor, facilitating longer lived charge carrier separation in Fe-doped CeO2 films as confirmed by photoluminescence spectroscopy. The 1.50 mol% Fe-doped CeO2 …


Enhanced Electrochemical Properties Of Cobalt Doped Manganese Dioxide Nanowires, Byoung Chul Kim, C Justin Raj, W J. Cho, W G. Lee, Hyeon Taek Jeong, K H. Yu Jan 2014

Enhanced Electrochemical Properties Of Cobalt Doped Manganese Dioxide Nanowires, Byoung Chul Kim, C Justin Raj, W J. Cho, W G. Lee, Hyeon Taek Jeong, K H. Yu

Australian Institute for Innovative Materials - Papers

The various molar concentrations of cobalt doped manganese dioxide (Co-MnO2) nanostructures were synthesized by an hydrothermal technique for electrochemical supercapacitor application. The X-ray diffraction analysis showed that the samples were composed of multiphase of MnO2 with dominant reflections of γ-MnO2 structure of crystallization. The morphological studies displayed the existence of MnO 2 nanowires with the width of 10-20 nm and showing a good degree of crystallization. The electrochemical characterization was performed using cyclic voltammetry, galvanostatic charge/discharge test and impedance spectroscopy in 1 M Na2SO4 aqueous electrolyte. All the samples exhibit a typical ideal capacitive behavior with an increasing order of …


Potential Advantage Of Multiple Alkali Metal Doped Knbo3 Single Crystals, Hideo Kimura, Hongyang Zhao, Rumi Tanahashi, Lei Guo, Tingting Jia, Qiwen Yao, Zhenxiang Cheng Jan 2014

Potential Advantage Of Multiple Alkali Metal Doped Knbo3 Single Crystals, Hideo Kimura, Hongyang Zhao, Rumi Tanahashi, Lei Guo, Tingting Jia, Qiwen Yao, Zhenxiang Cheng

Australian Institute for Innovative Materials - Papers

Potassium niobate crystal KNbO3 (KN) is a well-known crystal for lead free piezoelectric or nonlinear optical applications. The KN crystal has been studied in both single crystal form and in thin film form which has resulted in many review articles being published. In order to exceed the KN crystal, it is important to study KN phase forming and doping effects on the K site. This article summarizes the authors' study towards a multiple alkali metal doped KN crystal and related single crystals briefly from the viewpoint of crystal growth.


The Formation Of Nano-Layered Grains And Their Enhanced Superconducting Transition Temperature In Mg-Doped Fese0.9 Bulks, Feng Lan, Zongqing Ma, Yongchang Liu, Ning Chen, Qi Cai, Huijun Li, Shaon Barua, Dipakkumar Patel, Md Shahriar Hossain, Jung Ho Kim, S X. Dou Jan 2014

The Formation Of Nano-Layered Grains And Their Enhanced Superconducting Transition Temperature In Mg-Doped Fese0.9 Bulks, Feng Lan, Zongqing Ma, Yongchang Liu, Ning Chen, Qi Cai, Huijun Li, Shaon Barua, Dipakkumar Patel, Md Shahriar Hossain, Jung Ho Kim, S X. Dou

Australian Institute for Innovative Materials - Papers

To search a proper dopant to further improve superconductivity in 11 type Fe-based superconductors makes sense to both their superconductivity mechanism and possible technological applications. In present work, Mg doped FeSe polycrystalline bulks were obtained by a two-step solid-state reaction method. Even though there are many MgSe and iron impurities existing in the Mg heavy doped FeSe bulks, they exhibit obviously increased Tc compared to undoped FeSe sample. It was found that Mg addition has little effect on the crystal lattice parameters of superconducting beta-FeSe, whereas leads to the formation of nano-layered grain structure consisted of MgSe and beta-FeSe …


Effect Of Sintering Temperature On The Superconducting Properties Of Graphene Doped Mgb2, K S B De Silva, X Xu, Sanjeev Gambhir, D C K Wong, W X Li, Q Y. Hu Jan 2013

Effect Of Sintering Temperature On The Superconducting Properties Of Graphene Doped Mgb2, K S B De Silva, X Xu, Sanjeev Gambhir, D C K Wong, W X Li, Q Y. Hu

Australian Institute for Innovative Materials - Papers

A comprehensive study on the effects of sintering temperature on graphene-doped MgB2 superconductor was conducted. Graphene has emerged as an effective dopant that is capable of improving the critical current density (J-{\rm c}) and flux pinning at a very low doping level, with only a slight reduction of the critical temperature (T-{\rm c}). MgB2 undoped and graphene-doped bulk samples were prepared by the in situ method and sintered within a temperature range from 650 to 950 {\circ}\hbox{C}. It is surprising to note that at the doping level of 1 at.% the sample sintered at 850 {\circ}\hbox{C} shows a J\rm c …


Zno-Doped Lifepo4 Cathode Material For Lithium-Ion Battery Fabricated By Hydrothermal Method, Yemin Hu, Jun Yao, Zhe Zhao, Mingyuan Zhu, Ying Li, Hongming Jin, Huijun Zhao, Jiazhao Wang Jan 2013

Zno-Doped Lifepo4 Cathode Material For Lithium-Ion Battery Fabricated By Hydrothermal Method, Yemin Hu, Jun Yao, Zhe Zhao, Mingyuan Zhu, Ying Li, Hongming Jin, Huijun Zhao, Jiazhao Wang

Australian Institute for Innovative Materials - Papers

LiFePO4 particles doped with zinc oxide was synthesized via a hydrothermal route and used as cathode material for lithium-ion battery. Sample of preferable shape and structure was obtained by a concise and efficient process. ZnO doping into the LiFePO4 matrix was positively confirmed by the results of X-ray diffraction (XRD); high-resolution transmission electron microscopy (HRTEM); energy dispersive spectrometer (EDS), and X-ray photoelectron spectroscopy (XPS). LiFePO4 doped with ZnO tends to form nanometer-size and homogeneous particles, which can improve markedly the performance and stability of charge-discharge cycle. A specific discharge capacity of ZnO-doped LiFePO4 at 132.3 mAh g-1 was achieved, with …


Reaction Method Control Of Impurity Scattering In C-Doped Mgb2: Proving The Role Of Defects Besides C Substitution Level, S K. Chen, K Y. Tan, A S. Halim, X Xu, K S. B De Silva, W K. Yeoh, S X. Dou, A Kursumovic, J L. Macmanus-Driscoll Jan 2013

Reaction Method Control Of Impurity Scattering In C-Doped Mgb2: Proving The Role Of Defects Besides C Substitution Level, S K. Chen, K Y. Tan, A S. Halim, X Xu, K S. B De Silva, W K. Yeoh, S X. Dou, A Kursumovic, J L. Macmanus-Driscoll

Australian Institute for Innovative Materials - Papers

In this study, Si and C were incorporated into polycrystalline MgB2 via in situ reaction of Mg and B with either SiC or with separate Si and C (Si+C). The electrical transport and magnetic properties of the two series of samples were compared. The corrected resistivity at 40K, pA(40K), is higher for the SiC reacted samples regardless of carbon (C) substitution level, indicating larger intragrain scattering because of the simultaneous reaction between Mg and SiC and carbon substitution during the formation of MgB2. In addition, because of the cleaner reaction route for the SiC reacted samples, the calculated active area …


Surface Properties And Interaction Forces Of Biopolymer-Doped Conductive Polypyrrole Surfaces By Atomic Force Microscopy, Jani M. Pelto, Suvi P. Haimi, Aliisa S. Siljander, Susanna S. Miettinen, Kirsi M. Tappura, Michael J. Higgins, Gordon G. Wallace Jan 2013

Surface Properties And Interaction Forces Of Biopolymer-Doped Conductive Polypyrrole Surfaces By Atomic Force Microscopy, Jani M. Pelto, Suvi P. Haimi, Aliisa S. Siljander, Susanna S. Miettinen, Kirsi M. Tappura, Michael J. Higgins, Gordon G. Wallace

Australian Institute for Innovative Materials - Papers

Surface properties and electrical charges are critical factors elucidating cell interactions on biomaterial surfaces. The surface potential distribution and the nanoscopic and microscopic surface elasticity of organic polypyrrole-hyaluronic acid (PPy-HA) were studied by atomic force microscopy (AFM) in a fluid environment in order to explain the observed enhancement in the attachment of human adipose stem cells on positively charged PPy-HA films. The electrostatic force between the AFM tip and a charged PPy-HA surface, the tip-sample adhesion force, and elastic moduli were estimated from the AFM force curves, and the data were fitted to electrostatic double-layer and elastic contact models. The …


Polypyrrole Doped With Redox-Active Poly(2-Methoxyaniline-5-Sulfonic Acid) For Lithium Secondary Batteries, Yang Yang, Caiyun Wang, Syed A. Ashraf, Gordon G. Wallace Jan 2013

Polypyrrole Doped With Redox-Active Poly(2-Methoxyaniline-5-Sulfonic Acid) For Lithium Secondary Batteries, Yang Yang, Caiyun Wang, Syed A. Ashraf, Gordon G. Wallace

Australian Institute for Innovative Materials - Papers

Polypyrrole is a promising electrode material for flexible/bendable energy storage devices due to its inherent fast redox switching, mechanical flexibility, easy processability and being environmentally benign. However, its low attainable capacity limits its practical applications. Here, we synthesise a polypyrrole/poly(2-methoxyaniline-5-sulfonic acid) (PPy/PMAS) composite by incorporating redox-active PMAS into a PPy matrix via an electropolymerization method. For comparison, polypyrrole containing the electrochemically inert dopant p-toluenesulfonate (PPy-pTS) was prepared under the same conditions. The resultant PPy/PMAS film shows greatly improved electrochemical properties by harnessing the contribution from PMAS, i.e. higher specific capacity, better rate capability and improved cycling stability when used as …


Quantifying Fibronectin Adhesion With Nanoscale Spatial Resolution On Glycosaminoglycan Doped Polypyrrole Using Atomic Force Microscopy, Amy Gelmi, Michael J. Higgins, Gordon G. Wallace Jan 2013

Quantifying Fibronectin Adhesion With Nanoscale Spatial Resolution On Glycosaminoglycan Doped Polypyrrole Using Atomic Force Microscopy, Amy Gelmi, Michael J. Higgins, Gordon G. Wallace

Australian Institute for Innovative Materials - Papers

The interaction of ECM proteins is critical in determining the performance of materials used in biomedical applications such as tissue regeneration, implantable bionics and biosensing. Methods: To improve our understanding of ECM protein–conducting polymer interactions, we have used Atomic Force Microscopy (AFM) to elucidate the interactions of fibronectin (FN) on polypyrrole (PPy) doped with different glycosaminoglycans. Results: We were able to classify four main types of FN interactions, including those related to 1) non-specific adhesion, 2) protein unfolding and subsequent unbinding from the surface, 3) desorption and 4) interactions with no adhesion. FN adhesion on PPy/hyaluronic acid showed a significantly …


Flux Pinning And Vortex Transitions In Doped Bafe2as2 Single Crystals, S R. Ghorbani, X L. Wang, M Shabazi, S X. Dou, K Y. Choi, C T. Lin Jan 2012

Flux Pinning And Vortex Transitions In Doped Bafe2as2 Single Crystals, S R. Ghorbani, X L. Wang, M Shabazi, S X. Dou, K Y. Choi, C T. Lin

Australian Institute for Innovative Materials - Papers

The vortex liquid-to-glass transition has been studied in Ba0.72K0.28Fe2As2 (BaK-122), Ba(Fe0.91Co0.09)2As2(BaCo-122), and Ba(Fe0.95Ni0.05)2As2(BaNi-122) single crystal with superconducting transition temperature, Tc=31.7, 17.3, and 18 K, respectively, by magnetoresistance measurements. For temperatures below Tc, the resistivity curves were measured in magnetic fields within the range of 0≤B≤13 T, and the pinning potential was scaled according to a modified model for vortex liquid resistivity. Good scaling of the resistivity q(B, T) and the effective pinning energy …


The Effects Of Annealing Temperature On The In-Field Jc And Surface Pinning In Silicone Oil Doped Mgb2 Bulks And Wires, M S. Hossain, A Motaman, O Cicek, H Agil, E Ertekin, A Gencer, Xiaolin Wang, S X. Dou Jan 2012

The Effects Of Annealing Temperature On The In-Field Jc And Surface Pinning In Silicone Oil Doped Mgb2 Bulks And Wires, M S. Hossain, A Motaman, O Cicek, H Agil, E Ertekin, A Gencer, Xiaolin Wang, S X. Dou

Australian Institute for Innovative Materials - Papers

No abstract provided.


Strong Competition Between The Delta L And Delta T-C Flux Pinning Mechanisms In Mgb2 Doped With Carbon Containing Compounds, Shaban R. Ghorbani, Xiaolin Wang, Md S. Hossain, Qiwen Yao, S X. Dou, Sung-Ik Lee, K C. Chung, Y K. Kim Jan 2010

Strong Competition Between The Delta L And Delta T-C Flux Pinning Mechanisms In Mgb2 Doped With Carbon Containing Compounds, Shaban R. Ghorbani, Xiaolin Wang, Md S. Hossain, Qiwen Yao, S X. Dou, Sung-Ik Lee, K C. Chung, Y K. Kim

Australian Institute for Innovative Materials - Papers

The transport and magnetic properties of 10 wt % malic acid and 5 wt % nanocarbon doped MgB2 have been studied by measuring the resistivity (p), critical current density (jc), connectivity factor (AF), irreversibility field (Hirr), and upper critical field (Hc2). The pinning mechanisms are studied in terms of the collective pinning model. It was found that both mean free path (δl) and critical temperature (δTc) pinning mechanisms coexist in both doped MgB2. For both the malic acid and nanocarbon …


Magnetic Properties Of La Doped Bi2femno6 Ceramic And Film, Hongyang Zhao, Hideo Kimura, Zhenxiang Cheng, Xiaolin Wang, Kiyoshi Ozawa, Takashi Nishida Jan 2010

Magnetic Properties Of La Doped Bi2femno6 Ceramic And Film, Hongyang Zhao, Hideo Kimura, Zhenxiang Cheng, Xiaolin Wang, Kiyoshi Ozawa, Takashi Nishida

Australian Institute for Innovative Materials - Papers

We present a comprehensive study of the magnetic properties for La doped Bi2FeMnO6 (LBFM) ceramic and film which was first deposited on (100) SrTiO3 substrate by pulsed laser deposition method. The LBFM film is antiferromagnetic or weak ferrimagnetic at room temperature and it shows clear magnetic anisotropy. But it is not sure whether the spin-glass behavior is present in LBFM film because of the influence from substrate. Compared to the film, LBFM ceramic shows different magnetic properties. It has a lower TN and all the observations indicate that LBFM ceramic shows spin-glass behavior.


Lanthanum Doped Multiferroic Dyfeo3: Structural And Magnetic Properties, Yi Du, Zhenxiang Cheng, Xiaolin Wang, S X. Dou Jan 2010

Lanthanum Doped Multiferroic Dyfeo3: Structural And Magnetic Properties, Yi Du, Zhenxiang Cheng, Xiaolin Wang, S X. Dou

Australian Institute for Innovative Materials - Papers

Lanthanum doped multiferroic DyFeO3 was synthesized by solid state reaction. X-ray diffraction and refinement show that the lattice parameters of Dy1−xLaxFeO3 increase linearly with the La content. Raman spectroscopy reveals that the short-range force constant in Dy1−xLaxFeO3 is decreased by La3+ ion substitution. The spin reorientation phase transition temperature (TSRPT) is observed to decrease along with the doping level. The antiferromagnetic ordering temperature TN of Fe3+ ions is depressed with increasing doping level. Both decreasing TSRPT and decreasing TN indicate that Fe–Dy and Fe–Fe …


Phase Formation And Magnetotransport Of Alkali Metal Doped Na0.75coo2 Thermoelectric Oxide, Priyanka Jood, Germanas Peleckis, Xiaolin Wang, S X. Dou, H Yamauchi, M Karppinen Jan 2010

Phase Formation And Magnetotransport Of Alkali Metal Doped Na0.75coo2 Thermoelectric Oxide, Priyanka Jood, Germanas Peleckis, Xiaolin Wang, S X. Dou, H Yamauchi, M Karppinen

Australian Institute for Innovative Materials - Papers

Synthesis and characterization of bulk NaxCoO2 samples substituted by K and Rb is reported. Phase formation studies revealed a narrow stable region for Na-alkali metal-Co system. Whisker and platelike single crystalline structures have been found to form on the surface of the pellets in case of K doping. All samples were metallic and no characteristic anomaly in R-T curves was observed for Rb doped sample. Magnetoresistance measured has a pronounced positive response only for K-doped and pure NaxCoO2 phases, reaching 11% and 7% at 5 K temperature, respectively.


Superconducting Properties Of Carbonaceous Chemical Doped Mgb2, Wenxian Li, S X. Dou Jan 2010

Superconducting Properties Of Carbonaceous Chemical Doped Mgb2, Wenxian Li, S X. Dou

Australian Institute for Innovative Materials - Papers

The discovery of superconductivity in magnesium diboride (MgB2: 39 K, in January 2001) (Nagamatsu et al., 2001) has generated enormous interest and excitement in the superconductivity community and the world in general, but especially among researchers into superconductivity in non-oxide and boron related compounds.


Microstructural And Compositional Analysis Of Strontium-Doped Lead Zirconate Titanate Thin Films On Gold-Coated Silicon Substrates, S Sriram, M Bhaskaran, D Rg Mitchell, K T. Short, A Holland, A Mitchell Jan 2009

Microstructural And Compositional Analysis Of Strontium-Doped Lead Zirconate Titanate Thin Films On Gold-Coated Silicon Substrates, S Sriram, M Bhaskaran, D Rg Mitchell, K T. Short, A Holland, A Mitchell

Australian Institute for Innovative Materials - Papers

This article discusses the results of transmission electron microscopy ~TEM!-based characterization of strontium-doped lead zirconate titanate ~PSZT! thin films. The thin films were deposited by radio frequency magnetron sputtering at 3008C on gold-coated silicon substrates, which used a 15 nm titanium adhesion layer between the 150 nm thick gold film and ~100! silicon. The TEM analysis was carried out using a combination of high-resolution imaging, energy filtered imaging, energy dispersive X-ray ~EDX! analysis, and hollow cone illumination. At the interface between the PSZT films and gold, an amorphous silicon-rich layer ~about 4 nm thick! was observed, with the film composition …