Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Physical Sciences and Mathematics

Table Of Contents Jun 2022

Table Of Contents

Journal of the South Carolina Academy of Science

No abstract provided.


Nuclear Fuel Cycle: Safe Management Of Spent Nuclear Fuel, Robert L. Sindelar Jun 2022

Nuclear Fuel Cycle: Safe Management Of Spent Nuclear Fuel, Robert L. Sindelar

Journal of the South Carolina Academy of Science

The aim for storage of spent nuclear fuel (SNF) either in wet or in dry storage systems is to ensure general safety objectives are met throughout a desired storage period. Staff at the Savannah River National Laboratory (SRNL), in collaborations with partners at other national laboratories, industry research organizations, and the University of South Carolina (UofSC), have performed materials aging testing and analyses, and have established nuclear materials aging management programs to support extended periods of safe storage of research reactor (RR) SNF and of commercial power reactor (PR) SNF pending ultimate disposal. Several example challenges include susceptibility of aluminum …


The Effect Of Noise-Reducing Acoustic Panels On The Noise Levels And Overall Safety Of Infant Sleep Machines, Pranav Poola Aug 2021

The Effect Of Noise-Reducing Acoustic Panels On The Noise Levels And Overall Safety Of Infant Sleep Machines, Pranav Poola

Journal of the South Carolina Academy of Science

Infant sleep machines (ISMs) are devices used to help infants fall asleep faster and stay asleep for longer amounts of time, yet they can often be too loud for infantile ears, which could potentially be dangerous. This research aimed to minimize the risks of infant sleep machines without reducing the effectiveness of the infant sleep machines themselves through the use of acoustic panels. Based on previous studies, it was hypothesized that the acoustic panels would reduce the noise levels of the ISM to less than recommended limits of 50 dB-A. A specific corner of a designated room was prepared with …


Creation Of A Cip Method For The Heat Exchangers At Rolls-Royce, Melanie Howe, Austin Williams, Caroline Dempsey, Bethany Fralick Aug 2021

Creation Of A Cip Method For The Heat Exchangers At Rolls-Royce, Melanie Howe, Austin Williams, Caroline Dempsey, Bethany Fralick

Journal of the South Carolina Academy of Science

Rolls-Royce produces various engines which must be tested prior to their distribution to ensure a high-quality product. The manufacturing plant contains four test cells where the engines can be subjected to high levels of torque and extreme temperatures. A heat exchanger is necessary in this testing system and over time, unwanted waste accumulates on the system’s plates. The team is tasked with developing and implementing a system mounted on a mobile cart which can provide data to determine whether the plates need to be cleaned. For this cleaning system to work, it must fully saturate the heat exchanger in cleaning …


The Effects Of Joule Heating On Electric-Driven Microfluidic Flow, Alexander P. Spitzer Nov 2017

The Effects Of Joule Heating On Electric-Driven Microfluidic Flow, Alexander P. Spitzer

Journal of the South Carolina Academy of Science

This study sought out to more clearly understand the relationship between Joule heating and fluid flow in microfluidic environments, and more specifically, under what circumstances would the fluid flow in the device possibly hinder an experiment being run on it. It had been previous theorised that an electric field may produce turbulence and even vortices within the fluid, which this study attempted to reproduce. Several variables were tested, namely insulating and conducting fluids, higher and lower AC voltages, Newtonian vs. non-Newtonian fluids, and higher and lower DC voltages. A correlation between these variables and turbulent flow was found, with more …


Using Polymerization, Glass Structure, And Quasicrystalline Theory To Produce High Level Radioactive Borosilicate Glass Remotely: A 20+ Year Legacy, Carol M. Jantzen Apr 2017

Using Polymerization, Glass Structure, And Quasicrystalline Theory To Produce High Level Radioactive Borosilicate Glass Remotely: A 20+ Year Legacy, Carol M. Jantzen

Journal of the South Carolina Academy of Science

Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in borosilicate glass. One of the primary reasons that glass has become the most widely used immobilization media is the relative simplicity of the vitrification process, e.g. melt a highly variable waste with some glass forming additives such as SiO2 and B2O3 in the form of a premelted frit and pour the molten mixture into a stainless steel canister. Seal the canister before moisture can enter …


High Temperature Electrochemical Engineering And Clean Energy Systems, Brenda L. Garcia-Diaz, Luke Olson, Michael Martinez-Rodriguez, Roderick Fuentes, Hector Colon-Mercado, Josh Gray Mar 2016

High Temperature Electrochemical Engineering And Clean Energy Systems, Brenda L. Garcia-Diaz, Luke Olson, Michael Martinez-Rodriguez, Roderick Fuentes, Hector Colon-Mercado, Josh Gray

Journal of the South Carolina Academy of Science

Global power demand is projected to more than double by 2050 and meeting this increased power demand will require maintaining or increasing power output from all existing energy sources while adding a large amount of new capacity. The power sources that have the greatest opportunity to fulfill this demand gap over this time period are clean energy sources including solar and nuclear power. One of the areas of expertise that SRNL has been applying to help with a variety of clean energy technologies is in high temperature electrochemistry. Savannah River National Laboratory (SRNL) in collaboration with industrial and university partners …


On The Influence Of Ionic Strength On Radium And Strontium Sorption To Sandy Loam Soils, Brian A. Powell, Todd Miller, Daniel I. Kaplan Apr 2015

On The Influence Of Ionic Strength On Radium And Strontium Sorption To Sandy Loam Soils, Brian A. Powell, Todd Miller, Daniel I. Kaplan

Journal of the South Carolina Academy of Science

Models which can estimate environmental transport of radioactive contaminants in natural and engineered systems are required to 1) deploy effective remediation strategies for contaminated sites, 2) design waste repositories for future waste streams, and 3) ensure protection of human and environmental health in all cases. These models require accurate transport parameters in order to correctly predict how these contaminants will move in the subsurface. This work aimed to determine more accurately the distribution coefficients for radium and strontium sorption to Savannah River Site (SRS) soils. Radium and strontium sorption to the soils was found to be highly dependent upon ionic …


Towards The Perfect Optical Fiber, John Ballato Apr 2015

Towards The Perfect Optical Fiber, John Ballato

Journal of the South Carolina Academy of Science

Optical fibers are being used in an ever more diverse array of applications today. Many of these modern applications are in high-power and, particularly, high power-per-unit-bandwidth systems where optical nonlinearities historically have not limited overall performance. Today, however, nominally weak effects, such as stimulated Brillouin scattering (SBS), are restricting continued scaling to higher optical powers. To address these limitations, the optical fiber industry has focused on fiber geometry-related solutions such as large mode area (LMA) designs. However, since all linear and nonlinear optical phenomena are fundamentally materials-based in origin, this paper identifies material solutions to present and future performance limitations …