Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Engineering

California Polytechnic State University, San Luis Obispo

Theses/Dissertations

CFD

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

A High Quality, Eulerian 3d Fluid Solver In C++, Lejon Anthony Mcgowan Nov 2017

A High Quality, Eulerian 3d Fluid Solver In C++, Lejon Anthony Mcgowan

Computer Science and Software Engineering

Fluids are a part of everyday life, yet are one of the hardest elements to properly render in computer graphics. Water is the most obvious entity when thinking of what a fluid simulation can achieve (and it is indeed the focus of this project), but many other aspects of nature, like fog, clouds, and particle effects. Real-time graphics like video games employ many heuristics to approximate these effects, but large-scale renderers aim to simulate these effects as closely as possible.

In this project, I wish to achieve effects of the latter nature. Using the Eulerian technique of discrete grids, I …


High Order Finite Elements For Lagrangian Computational Fluid Dynamics, Truman Everett Ellis Apr 2010

High Order Finite Elements For Lagrangian Computational Fluid Dynamics, Truman Everett Ellis

Master's Theses

A general finite element method is presented to solve the Euler equations in a Lagrangian reference frame. This FEM framework allows for separate arbitrarily high order representation of kinematic and thermodynamic variables. An accompanying hydrodynamics code written in Matlab is presented as a test-bed to experiment with various basis function choices. A wide range of basis function pairs are postulated and a few choices are developed further, including the bi-quadratic Q2-Q1d and Q2-Q2d elements. These are compared with a corresponding pair of low order bi-linear elements, traditional Q1-Q0 and sub-zonal pressure Q1-Q1d. Several test problems are considered including static convergence …