Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Physical Sciences and Mathematics

Structure Studies On Lanthanide Technetium Pyrochlores As Prospective Host Phases To Immobilize 99- Technetium And Fission Lanthanides From Effluents Of Reprocessed Used Nuclear Fuels, Thomas Hartmann, Ariana Alaniz Apr 2011

Structure Studies On Lanthanide Technetium Pyrochlores As Prospective Host Phases To Immobilize 99- Technetium And Fission Lanthanides From Effluents Of Reprocessed Used Nuclear Fuels, Thomas Hartmann, Ariana Alaniz

Festival of Communities: UG Symposium (Posters)

We performed a systematic investigation of the incorporation of 99Tc into pyrochlore oxide structures, Ln2Tc2O7, where Ln represents trivalent lanthanide Ln3+ cations, while 99Tc is atetravalent, Tc4+, metal cation. Pyrochlore compounds are high-melting temperature oxides and are recognized for their durability. Our goal in this preliminary study is to characterize and quantify the range of stability of the lanthanum technetium pyrochlore oxide phase. Hereby, powder X-ray diffraction (XRD) and Rietveld analysis were used to determine and characterize the crystalline phase content with high accuracy, and scanning electron microscopy (SEM) was used to characterize the microstructure and homogeneity of the synthesized …


Entangling The Lattice Clock With Rydberg Gates, Frank J. Greenhalgh Apr 2011

Entangling The Lattice Clock With Rydberg Gates, Frank J. Greenhalgh

Festival of Communities: UG Symposium (Posters)

Knowledge of the exact time is critical to many engineers and planetary experts; unfortunately atomic clocks can't have infinite accuracy by Heisenberg's uncertainty principle. To attain accuracy past the limit we have achieved today, we will design a critical improvement of the atomic clock via the Rydberg gates method. Rydberg gates synchronize the atomic states so that they are more sensitive which will greatly increase the accuracy. This project will introduce fast acting Rydberg gates to an existing atomic clock layout. The Rydberg gates will allow the clock to entangle atoms in less time, thus decreasing decoherence effects on the …


Thin-Film Fabrication For High Pressure Thermoelectric And Electrical Resistivity Studies, Jorge L. Reynaga, Rama Venkat, Ravhi S. Kumar Apr 2011

Thin-Film Fabrication For High Pressure Thermoelectric And Electrical Resistivity Studies, Jorge L. Reynaga, Rama Venkat, Ravhi S. Kumar

Festival of Communities: UG Symposium (Posters)

Thermoelectric materials are of interest for application such as thermoelectric cooler in microprocessors and power generators in cars. High pressure plays an important role in understanding the changes in the figure of merit of thermoelectric thin films. To study the thermoelectric thin films a direct approach is to fabricate the thin film on the surface of a diamond anvil, so that the pressure dependence of structure and transport properties can be investigated easily. If we could successfully fabricate the electrical probes by depositing thin films, then it reduces the use of electrical wires as probes inside the diamond cell, as …


Predicting Homo And Lumo Energy Gaps For Organic Semi-Conductor: A Theoretical Study, Padtaya Pukpayat Apr 2011

Predicting Homo And Lumo Energy Gaps For Organic Semi-Conductor: A Theoretical Study, Padtaya Pukpayat

Festival of Communities: UG Symposium (Posters)

This poster presents a theoretical approach for characterizing the electronic properties of novel electron-deficient organic semiconductors containing variety of electron donor substituents. In treating these compounds, the following questions will be addressed: What effects to the bandgap will each substituent have? Will any of the substituents lower the band gap to the desired range for solar cell applications(<2.0eV)? Can we use the current, inexpensive and tractable computational methods as a predictive tool for guiding future experimental design of organic based solar cells, rather than depending solely on experimental procedures?


Aspect Ratio Dependent Buckling Mode Transition In Single-Walled Carbon Nanotubes Under Compression, Jeremy Feliciano Apr 2011

Aspect Ratio Dependent Buckling Mode Transition In Single-Walled Carbon Nanotubes Under Compression, Jeremy Feliciano

Festival of Communities: UG Symposium (Posters)

Using molecular dynamics simulations, we study axial compressive behavior of single-walled carbon nanotubes (SWCNTs) with a wide range of aspect ratios (length to diameter ratio). It is shown that the difference in aspect ratio leads to distinct buckling modes in SWCNTs. Small-aspect-ratio SWCNTs primarily exhibit shell buckling; they switch to column buckling mode with increasing aspect ratio. Further compression of the already column buckled large-aspect-ratio SWCNTs results in a shell buckling. This shell buckling mode is distinct from that of small-aspect-ratio SWCNTs in that it originates from the column buckling induced bending deformation.


X-Ray Diffraction On The Thermoelectric Silicides At High Pressure, Deep Patel, Ravhi S. Kumar, Andrew Cornelius Apr 2011

X-Ray Diffraction On The Thermoelectric Silicides At High Pressure, Deep Patel, Ravhi S. Kumar, Andrew Cornelius

Festival of Communities: UG Symposium (Posters)

Cobalt Silicide (CoSi2) is a transition metal disilicide that has gathered scientific interest due to its interesting thermoelectric properties and applications in silicon-based devices because of their high temperature stability. It has been reported that CoSi2 undergoes a phase transition at around 0.4 GPa and again at 13 GPa. Furthermore, at 13 GPa the material changes from a cubic cell to an orthorhombic cell, but details of the phase transition at 0.4 GPa could not be determined. To further study the properties of CoSi2 and understand its pressure induced phase changes, we recorded the structural behavior of CoSi2 under pressure.


Computational Study Of Carbon Nanotubes Under Strain, Jeremy Feliciano, William Wolfs Apr 2011

Computational Study Of Carbon Nanotubes Under Strain, Jeremy Feliciano, William Wolfs

Festival of Communities: UG Symposium (Posters)

We perform computational studies of carbon nanotubes (CNTs) using molecular dynamics simulations to examine the behavior of single-walled (SW) and multiwalled (MW) CNTs under large compressive and bending strains. We study the effects of defects, heating and chirality on their properties. Research on CNTs holds great promise for developing new advanced materials in applications ranging from high-strength composites to next-generation electronics.


Graphene: Material That Will Change The Future, Jigar Desai, Darryl Reese Apr 2011

Graphene: Material That Will Change The Future, Jigar Desai, Darryl Reese

Festival of Communities: UG Symposium (Posters)

Graphene is the most recent material discovered by scientists and is a star on the horizon of materials science and condensed matter physics. The one atom thick, two dimensional materials is an amazing conductor of electricity. Although graphene was not discovered completely until 2004, it has already revealed potential applications and scientists have begun researching ways of developing graphene products for the market. Only two products have been successfully produced so far, but scientists have encountered amazing results. This material has many potential applications in the real world and is about to change the future in a positive way.


Investigation Of Structural And Magnetic Properties Of Iron Clusters Encapsulated In Carbon, Andrew Mohrland, Eunja Kim, Phillipe Weck, Pang Tao, Kenneth Czerwinski Apr 2011

Investigation Of Structural And Magnetic Properties Of Iron Clusters Encapsulated In Carbon, Andrew Mohrland, Eunja Kim, Phillipe Weck, Pang Tao, Kenneth Czerwinski

Festival of Communities: UG Symposium (Posters)

Our goal is to investigate and predict the properties of iron-carbon nanostructures by performing numerical calculations using the density-functional theory. We are interested in which nanostructures are most stable, and in how they are likely to form. We have a particular interest in the magnetic properties of carbon "buckyballs" containing iron particles. These structures have potential for biomedical application, including use in anti-cancer treatment. Lone iron clusters have potential for use as a catalyst designed to reduce vehicle emissions.


Event Program, Carl Reiber, Nicholle Booker Apr 2011

Event Program, Carl Reiber, Nicholle Booker

Festival of Communities: UG Symposium (Posters)

UNLV Undergraduates from all departments, programs and colleges participated in a campus-wide symposium on April 16, 2011. Undergraduate posters from all disciplines and also oral presentations of research activities, readings and other creative endeavors were exhibited throughout the festival.