Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

The Reduction Of Storm Surge By Vegetation Canopies: Three-Dimensional Simulations, Y. Peter Sheng, Andrew Lapetina, Gangfeng Ma Jan 2012

The Reduction Of Storm Surge By Vegetation Canopies: Three-Dimensional Simulations, Y. Peter Sheng, Andrew Lapetina, Gangfeng Ma

Civil & Environmental Engineering Faculty Publications

Significant buffering of storm surges by vegetation canopies has been suggested by limited observations and simple numerical studies, particularly following recent Hurricanes Katrina, Rita, and Wilma. Here we simulate storm surge and inundation over idealized topographies using a three-dimensional vegetation-resolving storm surge model coupled to a shallow water wave model and show that a sufficiently wide and tall vegetation canopy reduces inundation on land by 5 to 40 percent, depending upon various storm and canopy parameters. Effectiveness of the vegetation in dissipating storm surge and inundation depends on the intensity and forward speed of the hurricane, as well as the …


Microfluidic Separation Of Live And Dead Yeast Cells Using Reservoir-Based Dielectrophoresis, Saurin Patel, Daniel Showers, Pallavi Vedantam, Tzuen-Rong Tzeng, Shizhi Qian, Xiangchun Xuan Jan 2012

Microfluidic Separation Of Live And Dead Yeast Cells Using Reservoir-Based Dielectrophoresis, Saurin Patel, Daniel Showers, Pallavi Vedantam, Tzuen-Rong Tzeng, Shizhi Qian, Xiangchun Xuan

Mechanical & Aerospace Engineering Faculty Publications

Separating live and dead cells is critical to the diagnosis of early stage diseases and to the efficacy test of drug screening, etc. This work demonstrates a novel microfluidic approach to dielectrophoretic separation of yeast cells by viability. It exploits the cell dielectrophoresis that is induced by the inherent electric field gradient at the reservoir-microchannel junction to selectively trap dead yeast cells and continuously separate them from live ones right inside the reservoir. This approach is therefore termed reservoir-based dielectrophoresis (rDEP). It has unique advantages as compared to existing dielectrophoretic approaches such as the occupation of zero channel space and …