Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 39

Full-Text Articles in Physical Sciences and Mathematics

Capillary-Tube Package Devices For The Quantitative Performance Evaluation Of Nuclear Magnetic Resonance Spectrometers And Pulse Sequences, Lingyu Chi, Ming Huang, Annalise R. Pfaff, Jie Huang, Rex E. Gerald Ii, Klaus Woelk Dec 2018

Capillary-Tube Package Devices For The Quantitative Performance Evaluation Of Nuclear Magnetic Resonance Spectrometers And Pulse Sequences, Lingyu Chi, Ming Huang, Annalise R. Pfaff, Jie Huang, Rex E. Gerald Ii, Klaus Woelk

Electrical and Computer Engineering Faculty Research & Creative Works

With the increased sensitivity of modern nuclear magnetic resonance (NMR) spectrometers, the minimum amount needed for chemical-shift referencing of NMR spectra has decreased to a point where a few microliters can be sufficient to observe a reference signal. The reduction in the amount of required reference material is the basis for the NMR Capillary-tube Package (CapPack) platform that utilizes capillary tubes with inner diameters smaller than 150 µm as NMR-tube inserts for external reference standards. It is shown how commercially available electrophoresis capillary tubes with outer diameters of 360 µm are filled with reference liquids or solutions and then permanently …


Multicellular Models Bridging Intracellular Signaling And Gene Transcription To Population Dynamics, Mohammad Aminul Islam, Satyaki Roy, Sajal K. Das, Dipak Barua Nov 2018

Multicellular Models Bridging Intracellular Signaling And Gene Transcription To Population Dynamics, Mohammad Aminul Islam, Satyaki Roy, Sajal K. Das, Dipak Barua

Computer Science Faculty Research & Creative Works

Cell signaling and gene transcription occur at faster time scales compared to cellular death, division, and evolution. Bridging these multiscale events in a model is computationally challenging. We introduce a framework for the systematic development of multiscale cell population models. Using message passing interface (MPI) parallelism, the framework creates a population model from a single-cell biochemical network model. It launches parallel simulations on a single-cell model and treats each stand-alone parallel process as a cell object. MPI mediates cell-to-cell and cell-to-environment communications in a server-client fashion. In the framework, model-specific higher level rules link the intracellular molecular events to cellular …


Early Detection Of Disease Using Electronic Health Records And Fisher's Wishart Discriminant Analysis, Sijia Yang, Jian Bian, Zeyi Sun, Licheng Wang, Haojin Zhu, Haoyi Xiong, Yu Li Nov 2018

Early Detection Of Disease Using Electronic Health Records And Fisher's Wishart Discriminant Analysis, Sijia Yang, Jian Bian, Zeyi Sun, Licheng Wang, Haojin Zhu, Haoyi Xiong, Yu Li

Engineering Management and Systems Engineering Faculty Research & Creative Works

Linear Discriminant Analysis (LDA) is a simple and effective technique for pattern classification, while it is also widely-used for early detection of diseases using Electronic Health Records (EHR) data. However, the performance of LDA for EHR data classification is frequently affected by two main factors: ill-posed estimation of LDA parameters (e.g., covariance matrix), and "linear inseparability" of the EHR data for classification. To handle these two issues, in this paper, we propose a novel classifier FWDA -- Fisher's Wishart Discriminant Analysis, which is developed as a faster and robust nonlinear classifier. Specifically, FWDA first surrogates the distribution of "potential" inverse …


Explosive Dust Test Vessel Comparison Using Pulverized Pittsburgh Coal, Jacob Miller, Jay Schafler, Phillip R. Mulligan, Robert Eades, Kyle A. Perry, Catherine E. Johnson Oct 2018

Explosive Dust Test Vessel Comparison Using Pulverized Pittsburgh Coal, Jacob Miller, Jay Schafler, Phillip R. Mulligan, Robert Eades, Kyle A. Perry, Catherine E. Johnson

Geosciences and Geological and Petroleum Engineering Faculty Research & Creative Works

Explosions of coal dust are a major safety concern within the coal mining industry. The explosion and subsequent fires caused by coal dust can result in significant property damage, loss of life in underground coal mines and damage to coal processing facilities. The United States Bureau of Mines conducted research on coal dust explosions until 1996 when it was dissolved. In the following years, the American Society for Testing and Materials (ASTM) developed a test standard, ASTM E1226, to provide a standard test method characterizing the “explosibility” of particulate solids of combustible materials suspended in air. The research presented herein …


Detonation Synthesis Of Alpha-Variant Silicon Carbide, Martin Langenderfer, Catherine E. Johnson, William Fahrenholtz, Vadym Mochalin Jul 2018

Detonation Synthesis Of Alpha-Variant Silicon Carbide, Martin Langenderfer, Catherine E. Johnson, William Fahrenholtz, Vadym Mochalin

Mining Engineering Faculty Research & Creative Works

A recent research study has been undertaken to develop facilities for conducting detonation synthesis of nanomaterials. This process involves a familiar technique that has been utilized for the industrial synthesis of nanodiamonds. Developments through this study have allowed for experimentation with the concept of modifying explosive compositions to induce synthesis of new nanomaterials. Initial experimentation has been conducted with the end goal being synthesis of alpha variant silicon carbide (α-SiC) in the nano-scale. The α-SiC that can be produced through detonation synthesis methods is critical to the ceramics industry because of a number of unique properties of the material. Conventional …


Worker Activity Recognition In Smart Manufacturing Using Imu And Semg Signals With Convolutional Neural Networks, Wenjin Tao, Ze-Hao Lai, Ming-Chuan Leu, Zhaozheng Yin Jun 2018

Worker Activity Recognition In Smart Manufacturing Using Imu And Semg Signals With Convolutional Neural Networks, Wenjin Tao, Ze-Hao Lai, Ming-Chuan Leu, Zhaozheng Yin

Mechanical and Aerospace Engineering Faculty Research & Creative Works

In a smart manufacturing system involving workers, recognition of the worker's activity can be used for quantification and evaluation of the worker's performance, as well as to provide onsite instructions with augmented reality. In this paper, we propose a method for activity recognition using Inertial Measurement Unit (IMU) and surface electromyography (sEMG) signals obtained from a Myo armband. The raw 10-channel IMU signals are stacked to form a signal image. This image is transformed into an activity image by applying Discrete Fourier Transformation (DFT) and then fed into a Convolutional Neural Network (CNN) for feature extraction, resulting in a high-level …


Modeling Of Cloud-Based Digital Twins For Smart Manufacturing With Mt Connect, Liwen Hu, Ngoc-Tu Nguyen, Wenjin Tao, Ming-Chuan Leu, Xiaoqing Frank Liu, Rakib Shahriar, S M Nahian Al Sunny Jun 2018

Modeling Of Cloud-Based Digital Twins For Smart Manufacturing With Mt Connect, Liwen Hu, Ngoc-Tu Nguyen, Wenjin Tao, Ming-Chuan Leu, Xiaoqing Frank Liu, Rakib Shahriar, S M Nahian Al Sunny

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The common modeling of digital twins uses an information model to describe the physical machines. The integration of digital twins into productive cyber-physical cloud manufacturing (CPCM) systems imposes strong demands such as reducing overhead and saving resources. In this paper, we develop and investigate a new method for building cloud-based digital twins (CBDT), which can be adapted to the CPCM platform. Our method helps reduce computing resources in the information processing center for efficient interactions between human users and physical machines. We introduce a knowledge resource center (KRC) built on a cloud server for information intensive applications. An information model …


The Viability Of Quantum Computing, Brennan Michael King May 2018

The Viability Of Quantum Computing, Brennan Michael King

Missouri S&T’s Peer to Peer

Quantum computing is an upcoming computational technology that could be the key to advancing the field and ushering in a new era of innovation. In this paper examines the viability of quantum computing extensively using only highly credible peer-reviewed articles from the last few years. These peer-reviewed articles will provide relevant facts and data from prominent researchers in the field of computer engineering. A growing problem in the field of electronics and computers is the concept of Moore’s law. Moore’s law refers to the doubling of transistors every two years in integrated circuits. Recent research has suggested that electronics may …


Nmr Studies Of Loaded Microspheres, Ming Huang, Sisi Chen, Rex E. Gerald Ii, Jie Huang, Klaus Woelk May 2018

Nmr Studies Of Loaded Microspheres, Ming Huang, Sisi Chen, Rex E. Gerald Ii, Jie Huang, Klaus Woelk

Electrical and Computer Engineering Faculty Research & Creative Works

Porous-wall hollow glass microspheres (PWHGMs) are a novel form of glass materials that consist of 1-μm-thick porous silica shells, 20-100 μm in diameter, with a hollow cavity in the center. Utilizing the central cavity for material storage and the porous walls for controlled release is a unique combination that renders PWHGMs a superior vehicle for targeted drug delivery. In this study, NMR spectroscopy was used to characterize PWHGMs for the first time. A vacuum-based loading system was developed to load PWHGMs with various compounds followed by a washing procedure that uses solvents immiscible with the target material. Immiscible binary model …


Spectral Analysis Of Surface Waves To Detect Subsurface Voids, Payman Hajiani, Neil Lennart Anderson, J. David Rogers Apr 2018

Spectral Analysis Of Surface Waves To Detect Subsurface Voids, Payman Hajiani, Neil Lennart Anderson, J. David Rogers

Geosciences and Geological and Petroleum Engineering Faculty Research & Creative Works

Systems and methods for detecting a subsurface cavity. A source applies a force to ground under inspection and a plurality of sensors coupled to the ground detect resulting surface waves. A processor is configured to extract phase and frequency components of the acquired seismic data, identify a phase shift in surface waves in the ground under inspection based on the extracted phase and frequency components, and determine one or more physical characteristics of a subsurface cavity based on the identified phase shift


Direct Error Driven Learning For Deep Neural Networks With Applications To Bigdata, R. Krishnan, Jagannathan Sarangapani, V. A. Samaranayake Apr 2018

Direct Error Driven Learning For Deep Neural Networks With Applications To Bigdata, R. Krishnan, Jagannathan Sarangapani, V. A. Samaranayake

Electrical and Computer Engineering Faculty Research & Creative Works

In this paper, generalization error for traditional learning regimes-based classification is demonstrated to increase in the presence of bigdata challenges such as noise and heterogeneity. To reduce this error while mitigating vanishing gradients, a deep neural network (NN)-based framework with a direct error-driven learning scheme is proposed. To reduce the impact of heterogeneity, an overall cost comprised of the learning error and approximate generalization error is defined where two NNs are utilized to estimate the costs respectively. To mitigate the issue of vanishing gradients, a direct error-driven learning regime is proposed where the error is directly utilized for learning. It …


A Multi-Step Nonlinear Dimension-Reduction Approach With Applications To Bigdata, R. Krishnan, V. A. Samaranayake, Jagannathan Sarangapani Apr 2018

A Multi-Step Nonlinear Dimension-Reduction Approach With Applications To Bigdata, R. Krishnan, V. A. Samaranayake, Jagannathan Sarangapani

Mathematics and Statistics Faculty Research & Creative Works

In this paper, a multi-step dimension-reduction approach is proposed for addressing nonlinear relationships within attributes. In this work, the attributes in the data are first organized into groups. In each group, the dimensions are reduced via a parametric mapping that takes into account nonlinear relationships. Mapping parameters are estimated using a low rank singular value decomposition (SVD) of distance covariance. Subsequently, the attributes are reorganized into groups based on the magnitude of their respective singular values. The group-wise organization and the subsequent reduction process is performed for multiple steps until a singular value-based user-defined criterion is satisfied. Simulation analysis is …


Phytoforensics: Trees As Bioindicators Of Potential Indoor Exposure Via Vapor Intrusion, Jordan L. Wilson, V. A. Samaranayake, Matt A. Limmer, Joel Gerard Burken Feb 2018

Phytoforensics: Trees As Bioindicators Of Potential Indoor Exposure Via Vapor Intrusion, Jordan L. Wilson, V. A. Samaranayake, Matt A. Limmer, Joel Gerard Burken

Mathematics and Statistics Faculty Research & Creative Works

Human exposure to volatile organic compounds (VOCs) via vapor intrusion (VI) is an emerging public health concern with notable detrimental impacts on public health. Phytoforensics, plant sampling to semi-quantitatively delineate subsurface contamination, provides a potential non-invasive screening approach to detect VI potential, and plant sampling is effective and also time- and cost-efficient. Existing VI assessment methods are time- and resource-intensive, invasive, and require access into residential and commercial buildings to drill holes through basement slabs to install sampling ports or require substantial equipment to install groundwater or soil vapor sampling outside the home. Tree-core samples collected in 2 days at …


Analyzing Sensor Based Human Activity Data Using Time Series Segmentation To Determine Sleep Duration, Yogesh Deepak Lad Jan 2018

Analyzing Sensor Based Human Activity Data Using Time Series Segmentation To Determine Sleep Duration, Yogesh Deepak Lad

Masters Theses

"Sleep is the most important thing to rest our brain and body. A lack of sleep has adverse effects on overall personal health and may lead to a variety of health disorders. According to Data from the Center for disease control and prevention in the United States of America, there is a formidable increase in the number of people suffering from sleep disorders like insomnia, sleep apnea, hypersomnia and many more. Sleep disorders can be avoided by assessing an individual's activity over a period of time to determine the sleep pattern and duration. The sleep pattern and duration can be …


The Utility Of Geophysical Techniques To Image The Shallow Subsurface In Karst Areas In Missouri, Nathainail Bashir Jan 2018

The Utility Of Geophysical Techniques To Image The Shallow Subsurface In Karst Areas In Missouri, Nathainail Bashir

Doctoral Dissertations

"This dissertation is composed of three papers, which are focused on the utility of geophysical techniques to imaging the shallow subsurface in karst areas in Missouri.

In the first paper, ground penetrating radar (GPR) and time domain electromagnetic metal detector (TDEM-MD) methods were effectively deployed in an investigation of the cemetery with the intent of locating unmarked graves. The outcome of this study is to expand the knowledge of GPR and TDEM-MD methods, to locate unmarked graves in cemeteries. The study concluded that the GPR method is superior than TDEM-MD to locate buried caskets in cemetery investigations.

In the second …


Correlation Between Delay Time And Measured Concentration And Concentration Uncertainty By Neutron Activation Analysis, James Thomas Seman Jan 2018

Correlation Between Delay Time And Measured Concentration And Concentration Uncertainty By Neutron Activation Analysis, James Thomas Seman

Doctoral Dissertations

"For the last several decades, it has been apparent that new methods of identifying explosives can help investigators trace their origins. One way to identify an explosive is through the use of taggants: materials added to a product that encodes information about the product such as when it was manufactured.

This research investigates the survivability of a new identification taggant called the Nuclear Barcode that overcomes some of the downfalls that have been identified in prior taggants. The Nuclear Barcode encodes information as a unique combination of concentrations of rare earths (Ho, Eu, Sm, Lu, and Dy) and precious metals …


Dragline Excavation Simulation, Real-Time Terrain Recognition And Object Detection, Godfred Somua-Gyimah Jan 2018

Dragline Excavation Simulation, Real-Time Terrain Recognition And Object Detection, Godfred Somua-Gyimah

Doctoral Dissertations

"The contribution of coal to global energy is expected to remain above 30% through 2030. Draglines are the preferred excavation equipment in most surface coal mines. Recently, studies toward dragline excavation efficiency have focused on two specific areas. The first area is dragline bucket studies, where the goal is to develop new designs which perform better than conventional buckets. Drawbacks in the current approach include operator inconsistencies and the inability to physically test every proposed design. Previous simulation models used Distinct Element Methods (DEM) but they over-predict excavation forces by 300% to 500%. In this study, a DEM-based simulation model …


Design And Characterization Of Multi-Spectral Underwater Beam-Port For Pool-Type Research Reactors, Meshari Mesfer Alqahtani Jan 2018

Design And Characterization Of Multi-Spectral Underwater Beam-Port For Pool-Type Research Reactors, Meshari Mesfer Alqahtani

Doctoral Dissertations

“The beam-port is a cardinal facility at research reactors necessary for dry irradiation, testing and measurement experiments. The Missouri University of Science and Technology Reactor (MSTR) is one such reactor with a beam-port. Installation of additional beam-port in such reactor facilities can be prohibitive. A novel remedy to this is an underwater beam-port for pool-type reactors. The design and characterization of a conceptual underwater multi-spectral beam-port for neutron and gamma fluxes were completed for the MSTR. The neutron spectra from the MSTR were simulated using the Monte Carlo N-particle (MCNP). The determined neutron spectra were experimentally validated using SAND-II. The …


Machine Learning Techniques Implementation In Power Optimization, Data Processing, And Bio-Medical Applications, Khalid Khairullah Mezied Al-Jabery Jan 2018

Machine Learning Techniques Implementation In Power Optimization, Data Processing, And Bio-Medical Applications, Khalid Khairullah Mezied Al-Jabery

Doctoral Dissertations

"The rapid progress and development in machine-learning algorithms becomes a key factor in determining the future of humanity. These algorithms and techniques were utilized to solve a wide spectrum of problems extended from data mining and knowledge discovery to unsupervised learning and optimization. This dissertation consists of two study areas. The first area investigates the use of reinforcement learning and adaptive critic design algorithms in the field of power grid control. The second area in this dissertation, consisting of three papers, focuses on developing and applying clustering algorithms on biomedical data. The first paper presents a novel modelling approach for …


Integrated Study On The Applicability Of Co₂-Eor In Unconventional Liquids Rich Reservoirs, Dheiaa Khafief Khashan Alfarge Jan 2018

Integrated Study On The Applicability Of Co₂-Eor In Unconventional Liquids Rich Reservoirs, Dheiaa Khafief Khashan Alfarge

Doctoral Dissertations

"Unconventional Liquids Rich Reservoirs (ULR) such as Bakken, Niobrara, and Eagle Ford have become the main target for oil and gas investors as conventional formations started to deplete and diminish in number. These unconventional plays have a huge oil reserve; however, the predicted primary oil recovery is still low as an average of 7.5 %. Unconventional Improved Oil Recovery (UIOR) techniques are still a new concept in the oil industry because there is no commercial project for any IOR technique so far. Injecting carbon dioxide (CO₂) might be the most potential strategy to improve oil recovery in such complex plays. …


Mitigation Of Environmental Hazards Of Sulfide Mineral Flotation With An Insight Into Froth Stability And Flotation Performance, Muhammad Badar Hayat Jan 2018

Mitigation Of Environmental Hazards Of Sulfide Mineral Flotation With An Insight Into Froth Stability And Flotation Performance, Muhammad Badar Hayat

Doctoral Dissertations

"Today's major challenges facing the flotation of sulfide minerals involve constant variability in the ore composition; environmental concerns; water scarcity and inefficient plant performance. The present work addresses these challenges faced by the flotation process of complex sulfide ore of Mississippi Valley type with an insight into the froth stability and the flotation performance. The first project in this study was aimed at finding the optimum conditions for the bulk flotation of galena (PbS) and chalcopyrite (CuFeS₂) through Response Surface Methodology (RSM). In the second project, an attempt was made to replace toxic sodium cyanide (NaCN) with the biodegradable chitosan …


Electrodeposited Semiconductor Nanostructures & Epitaxial Thin Films For Flexible Electronics, Naveen Kumar Mahenderkar Jan 2018

Electrodeposited Semiconductor Nanostructures & Epitaxial Thin Films For Flexible Electronics, Naveen Kumar Mahenderkar

Doctoral Dissertations

"Single-crystal Si is the bedrock of semiconductor devices due to the high crystalline perfection which minimizes electron-hole recombination, and the dense native silicon oxide which minimizes surface states. To expand the palette of electronic materials beyond planar Si, an inexpensive source of highly ordered material is needed that can serve as an inert substrate for the epitaxial growth of grain boundary-free semiconductors, photonic materials, and superconductors. There is also a need for a simple, inexpensive, and scalable fabrication technique for the growth of semiconductor nanostructures and thin films. This dissertation focuses on the fabrication of semiconducting nanowires (polycrystalline Ge & …


Electrodeposited Epitaxial Cobalt Oxides And Copper Metal, Caleb M. Hull Jan 2018

Electrodeposited Epitaxial Cobalt Oxides And Copper Metal, Caleb M. Hull

Doctoral Dissertations

"Electrochemical deposition methods are presented for the deposition of Co(OH)2 and Cu metal. Paper I shows the deposition of β-Co(OH)2 on Ti through electrochemical reduction of [Co(en)3]3+ to [Co(en)3]2+ in 2M NaOH. The catalytic properties of the deposited Co(OH)2 towards water oxidation is found comparable to Co3O4, with the surface of the Co(OH)2 converting to CoOOH during the reaction. Paper II gives the conditions suitable for epitaxial growth of Co(OH)2 on Au(100), Au(110), and Au(111) following the same reduction mechanism as described in Paper I. …


Characterization Of The Cylinderical Split Internal-Loop Photobioreactor With Scenedesmus Microalgae: Advanced Culturing, Modeling, And Hydrodynamics, Laith S. Sabri Jan 2018

Characterization Of The Cylinderical Split Internal-Loop Photobioreactor With Scenedesmus Microalgae: Advanced Culturing, Modeling, And Hydrodynamics, Laith S. Sabri

Doctoral Dissertations

"Microalgae are fast growing photoynthetic microorganisms and it have very wide range of industrial applications such as biofuels and wastewater treatment. These cells can be grown in a wide variety of systems ranging from open culture systems (e.g., ponds) to closed culture systems of photobioreactor (e.g., airlift). The open culture systems exist in the external environment, and hence, are not intrinsically controllable. However, the microalgae production in enclosed photobioreactors faces prohibitively high production costs with special difficulty in reactor design and scale-up. The light availability and utilization efficiency in the photobioreactor in terms of design and scale-up consider as the …


Modeling And Characterization Of Thermo-Oxidative Behavior Of Bismaleimide Composites, Rafid Muhammad Hussein Jan 2018

Modeling And Characterization Of Thermo-Oxidative Behavior Of Bismaleimide Composites, Rafid Muhammad Hussein

Doctoral Dissertations

"High-temperature polymer matrix composites (HTPMCs) are susceptible to thermo-oxidation, which accelerates the composites' degradation and reduces the service life. Mechanical properties of HTPMCs deteriorate due to coupled thermo-oxidation and cross-linking mechanisms. Bismaleimides (BMIs) are commonly used high-temperature resins for aerospace applications. This work presents the viability of using experimental weight loss to model the spatial distribution of oxidation when the oxidized polymer matrix is not discernible. Three tasks are introduced: (1) Anisotropic oxidation prediction using optimized weight loss behavior of bismaleimide composites, (2) A multi-scale modeling of thermo-oxidative effects on the flexural behavior of cross-ply bismaleimide composites, and (3) Thermo-oxidative …


Delineation Of A Coal Combustion Residue Landfill And Underlying Karst Subsurface In Southwest Missouri Using Ert And Masw Surveys, Ruobai Zhao Jan 2018

Delineation Of A Coal Combustion Residue Landfill And Underlying Karst Subsurface In Southwest Missouri Using Ert And Masw Surveys, Ruobai Zhao

Doctoral Dissertations

"The safe containment of coal combustion residual (CCR) in landfills was addressed by the U.S. Environment Protection Agency (EPA) CCR rule published in 2015. The new rule affects new and existing U.S. based CCR landfills in terms of implementing safeguard systems for safe disposal and contamination control. Electrical resistivity tomography (ERT) and multichannel analysis of surface waves (MASW) data were acquired across and in proximity to a CCR landfill in southwest Missouri, USA, with the intent to identify potential karst features and seepage pathways.

Electrical resistivity tomography data were acquired using an automated 8-channel resistivity meter and multichannel analysis of …


Functionalized Nanoporous Carbon Scaffolds For Hydrogen Storage Applications, Christopher L. Carr Jan 2018

Functionalized Nanoporous Carbon Scaffolds For Hydrogen Storage Applications, Christopher L. Carr

Doctoral Dissertations

"Recent efforts have demonstrated confinement in porous scaffolds at the nanoscale can alter the hydrogen sorption properties of metal hydrides, though not to an extent feasible for use in onboard hydrogen storage applications, proposing the need for a method allowing further modifications. The work presented here explores how the functionalization of nanoporous carbon scaffold surfaces with heteroatoms can modify the hydrogen sorption properties of confined metal hydrides in relation to non-functionalized scaffolds (FS). Investigations of nanoconfined LiBH4 and NaAlH4 indicate functionalizing the carbon scaffold surface with nitrogen can shift the activation energy of hydrogen desorption in excess of …


Imaging The Subsurface In Eastern Part Of Lake Chesterfield Using A Combination Of Geophysical Tools, Jiawei Li Jan 2018

Imaging The Subsurface In Eastern Part Of Lake Chesterfield Using A Combination Of Geophysical Tools, Jiawei Li

Masters Theses

"The Lake Chesterfield North Dam in Wildwood city, Missouri has been leaking, more or less continuously since the dam was constructed in 1986 despite mitigation efforts in 1988, 1994, 1995, 2004, and 2005. Neither the grouting efforts in 1988, 1994, 1995, 2004 or 2005, nor the placement and rehabilitation of an impervious clay liner in 2005 has solved the problem. Indeed, in June of 2017, the water level in Lake Chesterfield dropped at an alarmingly rapid rate.

Prior to authorizing additional mitigation work, the Lake Chesterfield Home Owners Association (LCHOA) decided to acquire geophysical data across the dry lake bed. …


Multiscale Approaches Toward Advanced Lithium-Ion Battery: From Nano To Meso Scale, Susmita Sarkar Jan 2018

Multiscale Approaches Toward Advanced Lithium-Ion Battery: From Nano To Meso Scale, Susmita Sarkar

Masters Theses

“Battery performance and its degradation are determined by various aspects such as the transport of ions and electrons through heterogeneous internal structures composed of constituent particles, kinetic reactions at the interfaces, and a corresponding interplay between mechanical, chemical, and thermal responses. Further, modern battery materials require a variety of engineering processes such as coating, doping and mixing. As a result, in order to fully understand the behavior of the battery material and improve battery performance, it is necessary to understand and control the individual particle behavior and then connect it to the electrode. This study elucidated the physical phenomena associated …


Numerical Modeling Of Capillary-Driven Flow In Open Microchannels: An Implication Of Optimized Wicking Fabric Design, Mehrad Gholizadeh Ansari Jan 2018

Numerical Modeling Of Capillary-Driven Flow In Open Microchannels: An Implication Of Optimized Wicking Fabric Design, Mehrad Gholizadeh Ansari

Masters Theses

"The use of microfluidics to transfer fluids without applying any exterior energy source is a promising technology in different fields of science and engineering due to their compactness, simplicity and cost-effective design. In geotechnical engineering, to increase the soil's strength, hydrophilic wicking fibers as type of microfluidics have been employed to transport and drain water out of soil spontaneously by taking advantage of natural capillary force without using any pumps or other auxiliary devices. The objective of this study is to understand the scientific mechanisms of the capability for wicking fiber to drain both gravity and capillary water out of …