Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 28 of 28

Full-Text Articles in Physical Sciences and Mathematics

Statistical Analysis And Comparison Of Optical Classification Of Atmospheric Aerosol Lidar Data, Mohammed Alqawba, Norou Diawara, Kwasi G. Afrifa, Mohamed I. Elbakary, Mecit Cetin, Khan Iftekharuddin Feb 2021

Statistical Analysis And Comparison Of Optical Classification Of Atmospheric Aerosol Lidar Data, Mohammed Alqawba, Norou Diawara, Kwasi G. Afrifa, Mohamed I. Elbakary, Mecit Cetin, Khan Iftekharuddin

Mathematics & Statistics Faculty Publications

In this article, we present a new study for the analysis and classification of atmospheric aerosols in remote sensing LIDAR data. Information on particle size and associated properties are extracted from these remote sensing atmospheric data which are collected by a ground-based LIDAR system. This study first considers optical LIDAR parameter-based classification methods for clustering and classification of different types of harmful aerosol particles in the atmosphere. Since accurate methods for aerosol prediction behaviors are based upon observed data, computational approaches must overcome design limitations, and consider appropriate calibration and estimation accuracy. Consequently, two statistical methods based on generalized linear …


Morphology-Dependent Resonances In Two Concentric Spheres With Variable Refractive Index In The Outer Layer: Analytic Solutions, Umaporn Nuntaplook, John A. Adam Jan 2021

Morphology-Dependent Resonances In Two Concentric Spheres With Variable Refractive Index In The Outer Layer: Analytic Solutions, Umaporn Nuntaplook, John A. Adam

Mathematics & Statistics Faculty Publications

In many applications constant or piecewise constant refractive index profiles are used to study the scattering of plane electromagnetic waves by a spherical object. When the structured media has variable refractive indices, this is more of a challenge. In this paper, we investigate the morphology dependent resonances for the scattering of electromagnetic waves from two concentric spheres when the outer shell has a variable refractive index. The resonance analysis is applied to the general solutions of the radial Debye potential for both transverse magnetic and transverse electric modes. Finally, the analytic conditions to determine the resonance locations for this system …


Methods For Weighting Decisions To Assist Modelers And Decision Analysts: A Review Of Ratio Assignment And Approximate Techniques, Barry Ezell, Christopher J. Lynch, Patrick T. Hester Jan 2021

Methods For Weighting Decisions To Assist Modelers And Decision Analysts: A Review Of Ratio Assignment And Approximate Techniques, Barry Ezell, Christopher J. Lynch, Patrick T. Hester

VMASC Publications

Computational models and simulations often involve representations of decision-making processes. Numerous methods exist for representing decision-making at varied resolution levels based on the objectives of the simulation and the desired level of fidelity for validation. Decision making relies on the type of decision and the criteria that is appropriate for making the decision; therefore, decision makers can reach unique decisions that meet their own needs given the same information. Accounting for personalized weighting scales can help to reflect a more realistic state for a modeled system. To this end, this article reviews and summarizes eight multi-criteria decision analysis (MCDA) techniques …


Cylindrical Magnetron Development For Nb₃Sn Deposition Via Magnetron Sputtering, Md. Nizam Sayeed, Hani Elsayed-Ali, C. Côté, M. A. Farzad, A. Sarkissian, G. V. Eremeev, A-M. Valente-Feliciano Jan 2021

Cylindrical Magnetron Development For Nb₃Sn Deposition Via Magnetron Sputtering, Md. Nizam Sayeed, Hani Elsayed-Ali, C. Côté, M. A. Farzad, A. Sarkissian, G. V. Eremeev, A-M. Valente-Feliciano

Electrical & Computer Engineering Faculty Publications

Due to its better superconducting properties (critical temperature Tc~ 18.3 K, superheating field Hsh~ 400 mT), Nb3Sn is considered as a potential alternative to niobium (Tc~ 9.25 K, Hsh~ 200 mT) for superconducting radiofrequency (SRF) cavities for particle acceleration. Magnetron sputtering is an effective method to produce superconducting Nb3Sn films. We deposited superconducting Nb3Sn films on samples with magnetron sputtering using co-sputtering, sequential sputtering, and sputtering from a stoichiometric target. Nb3Sn films produced by magnetron sputtering in our previous experiments have achieved DC superconducting critical temperature up to …


The Enlightening Role Of Explainable Artificial Intelligence In Chronic Wound Classification, Salih Sarp, Murat Kuzlu, Emmanuel Wilson, Umit Cali, Ozgur Guler Jan 2021

The Enlightening Role Of Explainable Artificial Intelligence In Chronic Wound Classification, Salih Sarp, Murat Kuzlu, Emmanuel Wilson, Umit Cali, Ozgur Guler

Engineering Technology Faculty Publications

Artificial Intelligence (AI) has been among the most emerging research and industrial application fields, especially in the healthcare domain, but operated as a black-box model with a limited understanding of its inner working over the past decades. AI algorithms are, in large part, built on weights calculated as a result of large matrix multiplications. It is typically hard to interpret and debug the computationally intensive processes. Explainable Artificial Intelligence (XAI) aims to solve black-box and hard-to-debug approaches through the use of various techniques and tools. In this study, XAI techniques are applied to chronic wound classification. The proposed model classifies …


See-Trend: Secure Traffic-Related Event Detection In Smart Communities, Stephan Olariu, Dimitrie C. Popescu Jan 2021

See-Trend: Secure Traffic-Related Event Detection In Smart Communities, Stephan Olariu, Dimitrie C. Popescu

Computer Science Faculty Publications

It has been widely recognized that one of the critical services provided by Smart Cities and Smart Communities is Smart Mobility. This paper lays the theoretical foundations of SEE-TREND, a system for Secure Early Traffic-Related EveNt Detection in Smart Cities and Smart Communities. SEE-TREND promotes Smart Mobility by implementing an anonymous, probabilistic collection of traffic-related data from passing vehicles. The collected data are then aggregated and used by its inference engine to build beliefs about the state of the traffic, to detect traffic trends, and to disseminate relevant traffic-related information along the roadway to help the driving public make informed …


Energy Renewal: Isothermal Utilization Of Environmental Heat Energy With Asymmetric Structures, James Weifu Lee Jan 2021

Energy Renewal: Isothermal Utilization Of Environmental Heat Energy With Asymmetric Structures, James Weifu Lee

Chemistry & Biochemistry Faculty Publications

Through the research presented herein, it is quite clear that there are two thermodynamically distinct types (A and B) of energetic processes naturally occurring on Earth. Type A, such as glycolysis and the tricarboxylic acid cycle, apparently follows the second law well; Type B, as exemplified by the thermotrophic function with transmembrane electrostatically localized protons presented here, does not necessarily have to be constrained by the second law, owing to its special asymmetric function. This study now, for the first time, numerically shows that transmembrane electrostatic proton localization (Type-B process) represents a negative entropy event with a local protonic entropy …


Developing An Institutional Arrangement For A Whole-Of-Government And Whole-Of-Community Approach To Regional Adaptation To Sea Level Rise: The Hampton Roads Pilot Project, Juita-Elena (Wie) Yusuf, J. Gail Nicula, Burton St. John Iii, Meagan M. Jordan, Michelle Covi, Carol Considine, Marina Saitgalina, Joshua Behr Jan 2021

Developing An Institutional Arrangement For A Whole-Of-Government And Whole-Of-Community Approach To Regional Adaptation To Sea Level Rise: The Hampton Roads Pilot Project, Juita-Elena (Wie) Yusuf, J. Gail Nicula, Burton St. John Iii, Meagan M. Jordan, Michelle Covi, Carol Considine, Marina Saitgalina, Joshua Behr

School of Public Service Faculty Publications

Adaptation to sea level rise (SLR) requires coordination among local, state, and federal entities and collaboration across governments, nonprofits, businesses, and residents. This coordination and collaboration are reflected in institutional arrangements associated with a whole-of-government and whole-of-community approach to regional adaptation. This study analyzes the development of an interlocal agreement (ILA), the Hampton Roads Sea Level Rise Preparedness and Resilience Intergovernmental Planning Pilot Project (the Pilot Project), as an example of such an arrangement. This study assesses how factors throughout three phases of ILA development (initiation, implementation, and execution) influence outcomes and effectiveness. Drawing upon participant observation, document analysis, survey …


Internet-Of-Things Devices In Support Of The Development Of Echoic Skills Among Children With Autism Spectrum Disorder, Krzysztof J. Rechowicz, John B. Stull, Michelle M. Hascall, Saikou Y. Diallo, Kevin J. O'Brien Jan 2021

Internet-Of-Things Devices In Support Of The Development Of Echoic Skills Among Children With Autism Spectrum Disorder, Krzysztof J. Rechowicz, John B. Stull, Michelle M. Hascall, Saikou Y. Diallo, Kevin J. O'Brien

VMASC Publications

A significant therapeutic challenge for people with disabilities is the development of verbal and echoic skills. Digital voice assistants (DVAs), such as Amazon’s Alexa, provide networked intelligence to billions of Internet-of-Things devices and have the potential to offer opportunities to people, such as those diagnosed with autism spectrum disorder (ASD), to advance these necessary skills. Voice interfaces can enable children with ASD to practice such skills at home; however, it remains unclear whether DVAs can be as proficient as therapists in recognizing utterances by a developing speaker. We developed an Alexa-based skill called ASPECT to measure how well the DVA …


Criticality Based Optimal Cyber Defense Remediation In Energy Delivery Systems, Kamrul Hasan, Sachin Shetty, Md. Sharif Ullah, Amin Hassanzadeh, Tariqul Islam Jan 2021

Criticality Based Optimal Cyber Defense Remediation In Energy Delivery Systems, Kamrul Hasan, Sachin Shetty, Md. Sharif Ullah, Amin Hassanzadeh, Tariqul Islam

VMASC Publications

A prioritized cyber defense remediation plan is critical for effective risk management in Energy Delivery System (EDS). Due to the complexity of EDS in terms of heterogeneous nature blending Information Technology (IT) and Operation Technology (OT) and Industrial Control System (ICS), scale and critical processes tasks, prioritized remediations should be applied gradually to protect critical assets. In this work, we propose a methodology for a prioritized cyber risk remediation plan by detecting and evaluating paths to critical nodes in EDS. We propose critical nodes characteristics evaluation based on nodes’ architectural positions, a measure of centrality based on nodes’ connectivity and …


Joint Modeling Of Rnaseq And Radiomics Data For Glioma Molecular Characterization And Prediction, Zeina A. Shboul, Norou Diawara, Arastoo Vossough, James Y. Chen, Khan M. Iftekharuddin Jan 2021

Joint Modeling Of Rnaseq And Radiomics Data For Glioma Molecular Characterization And Prediction, Zeina A. Shboul, Norou Diawara, Arastoo Vossough, James Y. Chen, Khan M. Iftekharuddin

Electrical & Computer Engineering Faculty Publications

RNA sequencing (RNAseq) is a recent technology that profiles gene expression by measuring the relative frequency of the RNAseq reads. RNAseq read counts data is increasingly used in oncologic care and while radiology features (radiomics) have also been gaining utility in radiology practice such as disease diagnosis, monitoring, and treatment planning. However, contemporary literature lacks appropriate RNA-radiomics (henceforth, radiogenomics) joint modeling where RNAseq distribution is adaptive and also preserves the nature of RNAseq read counts data for glioma grading and prediction. The Negative Binomial (NB) distribution may be useful to model RNAseq read counts data that addresses potential shortcomings. …


Rapid Quantification Of Biofouling With An Inexpensive, Underwater Camera And Image Analysis, Matthew R. First, Scott C. Riley, Kazi Aminul Islam, Victoria Hill, Jiang Li, Richard C. Zimmerman, Lisa A. Drake Jan 2021

Rapid Quantification Of Biofouling With An Inexpensive, Underwater Camera And Image Analysis, Matthew R. First, Scott C. Riley, Kazi Aminul Islam, Victoria Hill, Jiang Li, Richard C. Zimmerman, Lisa A. Drake

Electrical & Computer Engineering Faculty Publications

To reduce the transport of potentially invasive species on ships' submerged surfaces, rapid-and accurate-estimates of biofouling are needed so shipowners and regulators can effectively assess and manage biofouling. This pilot study developed a model approach for that task. First, photographic images were collected in situ with a submersible, inexpensive pocket camera. These images were used to develop image processing algorithms and train machine learning models to classify images containing natural assemblages of fouling organisms. All of the algorithms and models were implemented in a widely available software package (MATLAB©). Initially, an unsupervised clustering model was used, and three …


Design Of A 10 Mev Beamline At The Upgraded Injector Test Facility For E-Beam Irradiation, Xi Li, Helmut Baumgart, Gianluigi Ciovati, F.E. Hannon, S. Wang Jan 2021

Design Of A 10 Mev Beamline At The Upgraded Injector Test Facility For E-Beam Irradiation, Xi Li, Helmut Baumgart, Gianluigi Ciovati, F.E. Hannon, S. Wang

Electrical & Computer Engineering Faculty Publications

Electron beam irradiation near 10 MeV is suitable for wastewater treatment. The Upgraded Injector Test Facility (UITF) at Jefferson Lab is a CW superconducting linear accelerator capable of providing an electron beam of energy up to 10 MeV and up to 100 µA current. This contribution presents the beam transport simulations for a beamline to be used for the irradiation of wastewater samples at the UITF. The simulations were done using the code General Particle Tracer with the goal of obtaining an 8 MeV electron beam of radius (3-σ) of ~2.4 cm. The achieved energy spread is ~74.5 keV. The …


Formal Power Series Approach To Nonlinear Systems With Static Output Feedback, G.S. Venkatesh, W. Steven Gray Jan 2021

Formal Power Series Approach To Nonlinear Systems With Static Output Feedback, G.S. Venkatesh, W. Steven Gray

Electrical & Computer Engineering Faculty Publications

The goal of this paper is to compute the generating series of a closed-loop system when the plant is described in terms of a Chen-Fliess series and static output feedback is applied. The first step is to reconsider the so called Wiener-Fliess connection consisting of a Chen-Fliess series followed by a memoryless function. Of particular importance will be the contractive nature of this map, which is needed to show that the closed-loop system has a Chen-Fliess series representation. To explicitly compute the generating series, two Hopf algebras are needed, the existing output feedback Hopf algebra used to describe dynamic output …


Transient Behavior Of Drift And Ionization In Atmospheric Pressure Nitrogen Discharge, S. K. Dhali Jan 2021

Transient Behavior Of Drift And Ionization In Atmospheric Pressure Nitrogen Discharge, S. K. Dhali

Electrical & Computer Engineering Faculty Publications

The fluid models are frequently used to describe a non-thermal plasma such as a streamer discharge. The required electron transport data and rate coefficients for the fluid model are parametrized using the local field approximation (LFA) in first order models and the local-mean-energy approximation (LMEA) in second order models. We performed Monte Carlo simulations in Nitrogen gas with step changes in the E/N (reduced electric field) to study the behavior of the transport properties in the transient phase. During the transient phase of the simulation, we extract the instantaneous electron mean energy, which is different from the steady state mean …


The Resistive Barrier Discharge: A Brief Review Of The Device And Its Biomedical Applications, Mounir Laroussi Jan 2021

The Resistive Barrier Discharge: A Brief Review Of The Device And Its Biomedical Applications, Mounir Laroussi

Electrical & Computer Engineering Faculty Publications

This paper reviews the principles behind the design and operation of the resistive barrier discharge, a low temperature plasma source that operates at atmospheric pressure. One of the advantages of this plasma source is that it can be operated using either DC or AC high voltages. Plasma generated by the resistive barrier discharge has been used to efficiently inactivate pathogenic microorganisms and to destroy cancer cells. These biomedical applications of low temperature plasma are of great interest because in recent times bacteria developed increased resistance to antibiotics and because present cancer therapies often are accompanied by serious side effects. Low …


Assessment Of Cu(In, Ga)Se₂ Solar Cells Degradation Due To Water Ingress Effect On The Cds Buffer Layer, Deewakar Poudel, Benjamin Belfore, Shankar Karki, Grace Rajan, Sina Soltanmohammad, Angus Rockett, Sylvain Marsillac Jan 2021

Assessment Of Cu(In, Ga)Se₂ Solar Cells Degradation Due To Water Ingress Effect On The Cds Buffer Layer, Deewakar Poudel, Benjamin Belfore, Shankar Karki, Grace Rajan, Sina Soltanmohammad, Angus Rockett, Sylvain Marsillac

Electrical & Computer Engineering Faculty Publications

The effect of water ingress on the surface of the buffer layer of a Cu(In, Ga)Se2 (CIGS) solar cell was studied. Such degradation can occur either during the fabrication process, if it involves a chemical bath as is often the case for CdS, or while the modules are in the field and encapsulants degrade. To simulate the impact of this moisture ingress, devices with a structure sodalime glass/Mo/CIGS/CdS were immersed in deionized water. The thin films were then analyzed both pre and post water soaking. Dynamic secondary ion mass spectroscopy (SIMS) was performed on completed devices to analyze impurity diffusion …


High Voltage Design And Evaluation Of Wien Filters For The Cebaf 200 Kev Injector Upgrade, Gabriel Palacios-Serrano, Helmut Baumgart, C. Hernández-García, P. Adderley, J. Benesch, D. Bullard, J. Grames, A. Hofler, D. Machie, M. Poelker, M. Stutzman, R. Suleiman Jan 2021

High Voltage Design And Evaluation Of Wien Filters For The Cebaf 200 Kev Injector Upgrade, Gabriel Palacios-Serrano, Helmut Baumgart, C. Hernández-García, P. Adderley, J. Benesch, D. Bullard, J. Grames, A. Hofler, D. Machie, M. Poelker, M. Stutzman, R. Suleiman

Electrical & Computer Engineering Faculty Publications

High-energy nuclear physics experiments at the Jefferson Lab Continuous Electron Beam Accelerator Facility (CEBAF) require highly spin-polarization electron beams, produced from strained super-lattice GaAs photocathodes, activated to negative electron affinity in a photogun operating at 130 kV dc. A pair of Wien filter spin rotators in the injector defines the orientation of the electron beam polarization at the end station target. An upgrade of the CEBAF injector to better support the upcoming MOLLER experiment requires increasing the electron beam energy to 200 keV, to reduce unwanted helicity correlated intensity and position systematics and provide precise control of the polarization orientation. …


Simulation Studies On The Interactions Of Electron Beam With Wastewater, X. Li, S. Wang, Helmut Baumgart, G. Ciovati, F. Hannon Jan 2021

Simulation Studies On The Interactions Of Electron Beam With Wastewater, X. Li, S. Wang, Helmut Baumgart, G. Ciovati, F. Hannon

Electrical & Computer Engineering Faculty Publications

The manufactured chemical pollutants, like 1,4 dioxane and PFAS (per- and polyfluroralkyl substances), found in the underground water and/or drinking water are challenging to be removed or biodegraded. Energetic electrons are capable of mediating and removing them. This paper utilizes FLUKA code to evaluate the beam-wastewater interaction effects with different energy, space and divergence distributions of the electron beam. With 8 MeV average energy, the electron beam exits from a 0.0127 cm thick titanium window, travels through a 4.3 cm distance air and a second 0.0127 cm thick stainless water container window with 2.43 cm radius, and finally is injected …


Initial Studies Of Cavity Fault Prediction At Jefferson Laboratory, L.S. Vidyaratne, A. Carpenter, R. Suleiman, C. Tennant, D. Turner, Khan Iftekharuddin, Md. Monibor Rahman Jan 2021

Initial Studies Of Cavity Fault Prediction At Jefferson Laboratory, L.S. Vidyaratne, A. Carpenter, R. Suleiman, C. Tennant, D. Turner, Khan Iftekharuddin, Md. Monibor Rahman

Electrical & Computer Engineering Faculty Publications

The Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Laboratory is a CW recirculating linac that utilizes over 400 superconducting radio-frequency (SRF) cavities to accelerate electrons up to 12 GeV through 5-passes. Recent work has shown that, given RF signals from a cavity during a fault as input, machine learning approaches can accurately classify the fault type. In this paper we report on initial results of predicting a fault onset using only data prior to the failure event. A data set was constructed using time-series data immediately before a fault (’unstable’) and 1.5 seconds prior to a fault (’stable’) gathered …


Generation Of Excited Species In A Streamer Discharge, Shirshak K. Dhali Jan 2021

Generation Of Excited Species In A Streamer Discharge, Shirshak K. Dhali

Electrical & Computer Engineering Faculty Publications

At or near atmospheric pressure, most transient discharges, particularly in molecular gases or gas mixture containing molecular gases, result in a space charge dominated transport called a streamer discharge. The excited species generation in such discharges forms the basis for plasma chemistry in most technological applications. In this paper, we simulate the propagation of streamers in atmospheric pressure N2 to understand the energy partitioning in the formation of various excited species and compare the results to a uniform Townsend discharge. The model is fully two-dimensional with azimuthal symmetry. The results show a significantly larger fraction of the energy goes …


Reflection And Transmission Of Electromagnetic Pulses At A Planar Dielectric Interface: Theory And Quantum Lattice Simulations, Abhay K. Ram, George Vahala, Linda Vahala, Min Soe Jan 2021

Reflection And Transmission Of Electromagnetic Pulses At A Planar Dielectric Interface: Theory And Quantum Lattice Simulations, Abhay K. Ram, George Vahala, Linda Vahala, Min Soe

Electrical & Computer Engineering Faculty Publications

There is considerable interest in the application of quantum information science to advance computations in plasma physics. A particular point of curiosity is whether it is possible to take advantage of quantum computers to speed up numerical simulations relative to conventional computers. Many of the topics in fusion plasma physics are classical in nature. In order to implement them on quantum computers, it will require couching a classical problem in the language of quantum mechanics. Electromagnetic waves are routinely used in fusion experiments to heat a plasma or to generate currents in the plasma. The propagation of electromagnetic waves is …


Continuity Of Chen-Fliess Series For Applications In System Identification And Machine Learning, Rafael Dahmen, W. Steven Gray, Alexander Schmeding Jan 2021

Continuity Of Chen-Fliess Series For Applications In System Identification And Machine Learning, Rafael Dahmen, W. Steven Gray, Alexander Schmeding

Electrical & Computer Engineering Faculty Publications

Model continuity plays an important role in applications like system identification, adaptive control, and machine learning. This paper provides sufficient conditions under which input-output systems represented by locally convergent Chen-Fliess series are jointly continuous with respect to their generating series and as operators mapping a ball in an Lp-space to a ball in an Lq-space, where p and q are conjugate exponents. The starting point is to introduce a class of topological vector spaces known as Silva spaces to frame the problem and then to employ the concept of a direct limit to describe convergence. The proof of the main …


Matters Of Biocybersecurity With Consideration To Propaganda Outlets And Biological Agents, Xavier-Lewis Palmer, Ernestine Powell, Lucas Potter, Thaddeus Eze (Ed.), Lee Speakman (Ed.), Cyril Onwubiko (Ed.) Jan 2021

Matters Of Biocybersecurity With Consideration To Propaganda Outlets And Biological Agents, Xavier-Lewis Palmer, Ernestine Powell, Lucas Potter, Thaddeus Eze (Ed.), Lee Speakman (Ed.), Cyril Onwubiko (Ed.)

Electrical & Computer Engineering Faculty Publications

The modern era holds vast modalities in human data utilization. Within Biocybersecurity (BCS), categories of biological information, especially medical information transmitted online, can be viewed as pathways to destabilize organizations. Therefore, analysis of how the public, along with medical providers, process such data, and the methods by which false information, particularly propaganda, can be used to upset the flow of verified information to populations of medical professionals, is important for maintenance of public health. Herein, we discuss some interplay of BCS within the scope of propaganda and considerations for navigating the field.


Using Ai For Management Of Field Emission In Srf Linacs, A. Carpenter, P. Degtiarenko, R. Suleiman, C. Tennant, D. Turner, L. S. Vidyaratne, Khan Iftekharuddin, Md. Monibor Rahman Jan 2021

Using Ai For Management Of Field Emission In Srf Linacs, A. Carpenter, P. Degtiarenko, R. Suleiman, C. Tennant, D. Turner, L. S. Vidyaratne, Khan Iftekharuddin, Md. Monibor Rahman

Electrical & Computer Engineering Faculty Publications

Field emission control, mitigation, and reduction is critical for reliable operation of high gradient superconducting radio-frequency (SRF) accelerators. With the SRF cavities at high gradients, the field emission of electrons from cavity walls can occur and will impact the operational gradient, radiological environment via activated components, and reliability of CEBAF’s two linacs. A new effort has started to minimize field emission in the CEBAF linacs by re-distributing cavity gradients. To measure radiation levels, newly designed neutron and gamma radiation dose rate monitors have been installed in both linacs. Artificial intelligence (AI) techniques will be used to identify cavities with high …


Magnetic Field Sensors For Detection Of Trapped Flux In Superconducting Radio Frequency Cavities, Ishwari Prasad Parajuli, Gianluigi Ciovati, Jean R. Delayen Jan 2021

Magnetic Field Sensors For Detection Of Trapped Flux In Superconducting Radio Frequency Cavities, Ishwari Prasad Parajuli, Gianluigi Ciovati, Jean R. Delayen

Physics Faculty Publications

Superconducting radio frequency (SRF) cavities are fundamental building blocks of modern particle accelerators. They operate at liquid helium temperatures (2–4 K) to achieve very high quality factors (1010–1011). Trapping of magnetic flux within the superconductor is a significant contribution to the residual RF losses, which limit the achievable quality factor. Suitable diagnostic tools are in high demand to understand the mechanisms of flux trapping in technical superconductors, and the fundamental components of such diagnostic tools are magnetic field sensors. We have studied the performance of commercially available Hall probes, anisotropic magnetoresistive sensors, and flux-gate magnetometers with …


Electroosmotic Flow Of Viscoelastic Fluid Through A Constriction Microchannel, Jianyu Ji, Shizhi Qian, Zhaohui Liu Jan 2021

Electroosmotic Flow Of Viscoelastic Fluid Through A Constriction Microchannel, Jianyu Ji, Shizhi Qian, Zhaohui Liu

Mechanical & Aerospace Engineering Faculty Publications

Electroosmotic flow (EOF) has been widely used in various biochemical microfluidic applications, many of which use viscoelastic non-Newtonian fluid. This study numerically investigates the EOF of viscoelastic fluid through a 10:1 constriction microfluidic channel connecting two reservoirs on either side. The flow is modelled by the Oldroyd-B (OB) model coupled with the Poisson–Boltzmann model. EOF of polyacrylamide (PAA) solution is studied as a function of the PAA concentration and the applied electric field. In contrast to steady EOF of Newtonian fluid, the EOF of PAA solution becomes unstable when the applied electric field (PAA concentration) exceeds a critical value for …


Fluid Model Of Plasma-Liquid Interaction: The Effect Of Interfacial Boundary Conditions And Henry's Law Constants, Yifan Liu, Dingxin Liu, Jishen Zhang, Bowen Sun, Santu Luo, Hao Zhang, Li Guo, Mingzhe Rong, Michael G. Kong Jan 2021

Fluid Model Of Plasma-Liquid Interaction: The Effect Of Interfacial Boundary Conditions And Henry's Law Constants, Yifan Liu, Dingxin Liu, Jishen Zhang, Bowen Sun, Santu Luo, Hao Zhang, Li Guo, Mingzhe Rong, Michael G. Kong

Bioelectrics Publications

Plasma–liquid interaction is a critical area of plasma science, mainly because much remains unknown about the physicochemical processes occurring at the plasma–liquid interface. Besides a lot of experimental studies toward the interaction, a few fluid models have also been reported in recent years. However, the interfacial boundary conditions in the models are different and the Henry's law constants therein are uncertain; hence, the accuracy and robustness of the simulation results are doubtable. In view of this, three 1D fluid models are developed for the interaction between a plasma jet and deionized water, each of which has a unique interfacial boundary …