Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

What Controls Variation In Carbon Use Efficiency Among Amazonian Tropical Forests?, Christopher E. Doughty, Gregory R. Goldsmith, Nicolas Raab, Cecile A. J. Girardin, Filio Farfan-Amezquita, Walter Huaraca-Huasco, Javier E. Silva-Espejo, Alejandro Araujo-Murakami, Antonio C. L. Da Costa, Wanderley Rocha, David Galbraith, Patrick Meir, Dan B. Metcalfe, Yadvinder Malhi Oct 2017

What Controls Variation In Carbon Use Efficiency Among Amazonian Tropical Forests?, Christopher E. Doughty, Gregory R. Goldsmith, Nicolas Raab, Cecile A. J. Girardin, Filio Farfan-Amezquita, Walter Huaraca-Huasco, Javier E. Silva-Espejo, Alejandro Araujo-Murakami, Antonio C. L. Da Costa, Wanderley Rocha, David Galbraith, Patrick Meir, Dan B. Metcalfe, Yadvinder Malhi

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Why do some forests produce biomass more efficiently than others? Variations in Carbon Use Efficiency (CUE: total Net Primary Production (NPP)/ Gross Primary Production (GPP)) may be due to changes in wood residence time (Biomass/NPPwood), temperature, or soil nutrient status. We tested these hypotheses in 14, one ha plots across Amazonian and Andean forests where we measured most key components of net primary production (NPP: wood, fine roots, and leaves) and autotrophic respiration (Ra; wood, rhizosphere, and leaf respiration). We found that lower fertility sites were less efficient at producing biomass and had higher rhizosphere respiration, …


Experimental Impacts Of Climate Warming And Ocean Carbonation On Eelgrass Zostera Marina, Richard C. Zimmerman, Victoria J. Hill, Malee Jinuntuya, Billur Celebi, David Ruble, Miranda Smith, Tiffany Cedeno, W. Mark Swingle Feb 2017

Experimental Impacts Of Climate Warming And Ocean Carbonation On Eelgrass Zostera Marina, Richard C. Zimmerman, Victoria J. Hill, Malee Jinuntuya, Billur Celebi, David Ruble, Miranda Smith, Tiffany Cedeno, W. Mark Swingle

OES Faculty Publications

CO2 is a critical and potentially limiting substrate for photosynthesis of both terrestrial and aquatic ecosystems. In addition to being a climate-warming greenhouse gas, increasing concentrations of CO2 will dissolve in the oceans, eliciting both negative and positive responses among organisms in a process commonly known as ocean acidification. The dissolution of CO2 into ocean surface waters, however, also increases its availability for photosynthesis, to which the highly successful, and ecologically important, seagrasses respond positively. Thus, the process might be more accurately characterized as ocean carbonation. This experiment demonstrated that CO2 stimulation of primary production enhances …