Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Large Marine Protected Areas Represent Biodiversity Now And Under Climate Change, T. E. Davies, S. M. Maxwell, K. Kaschner, C. Garilao, N. C. Ban Aug 2017

Large Marine Protected Areas Represent Biodiversity Now And Under Climate Change, T. E. Davies, S. M. Maxwell, K. Kaschner, C. Garilao, N. C. Ban

Biological Sciences Faculty Publications

Large marine protected areas (>30,000 km2) have a high profile in marine conservation, yet their contribution to conservation is contested. Assessing the overlap of large marine protected areas with 14,172 species, we found large marine protected areas cover 4.4% of the ocean and at least some portion of the range of 83.3% of the species assessed. Of all species within large marine protected areas, 26.9% had at least 10% of their range represented, and this was projected to increase to 40.1% in 2100. Cumulative impacts were significantly higher within large marine protected areas than outside, refuting the …


Rapid Adaptive Responses To Climate Change In Corals, Gergely Torda, Jennifer M. Donelson, Manuel Aranda, Daniel J. Barshis, Line Bay, Michael L. Berumen, David G. Bourne, Neal Cantin, Sylvain Foret, Mikhail Matz Jan 2017

Rapid Adaptive Responses To Climate Change In Corals, Gergely Torda, Jennifer M. Donelson, Manuel Aranda, Daniel J. Barshis, Line Bay, Michael L. Berumen, David G. Bourne, Neal Cantin, Sylvain Foret, Mikhail Matz

Biological Sciences Faculty Publications

Pivotal to projecting the fate of coral reefs is the capacity of reef-building corals to acclimatize and adapt to climate change. Transgenerational plasticity may enable some marine organisms to acclimatize over several generations and it has been hypothesized that epigenetic processes and microbial associations might facilitate adaptive responses. However, current evidence is equivocal and understanding of the underlying processes is limited. Here, we discuss prospects for observing transgenerational plasticity in corals and the mechanisms that could enable adaptive plasticity in the coral holobiont, including the potential role of epigenetics and coral-associated microbes. Well-designed and strictly controlled experiments are needed to …


Impact Of Disease On The Survival Of Three Commercially Fished Species, John M. Hoenig, Maya L. Groner, Matthew W. Smith, Wolfgang K. Vogelbein, David M. Taylor, Donald F. Landers Jr., John T. Swenarton, David T. Gauthier Jan 2017

Impact Of Disease On The Survival Of Three Commercially Fished Species, John M. Hoenig, Maya L. Groner, Matthew W. Smith, Wolfgang K. Vogelbein, David M. Taylor, Donald F. Landers Jr., John T. Swenarton, David T. Gauthier

Biological Sciences Faculty Publications

Recent increases in emergent infectious diseases have raised concerns about the sustainability of some marine species. The complexity and expense of studying diseases in marine systems often dictate that conservation and management decisions are made without quantitative data on population-level impacts of disease. Mark-recapture is a powerful, underutilized, tool for calculating impacts of disease on population size and structure, even in the absence of etiological information. We applied logistic regression models to mark-recapture data to obtain estimates of disease-associated mortality rates in three commercially important marine species: snow crab (Chionoecetes opilio) in Newfoundland, Canada, that experience sporadic epizootics …