Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Uncertainty In Simulating Gross Primary Production Of Cropland Ecosystem From Satellite-Based Models, Wenping Yuan, Wenwen Cai, Anthony L. Nguy-Robertson, Huajun Fang, Andrew E. Suyker, Yang Chen, Wenjie Dong, Shuguang Liu, Haicheng Zhang Apr 2015

Uncertainty In Simulating Gross Primary Production Of Cropland Ecosystem From Satellite-Based Models, Wenping Yuan, Wenwen Cai, Anthony L. Nguy-Robertson, Huajun Fang, Andrew E. Suyker, Yang Chen, Wenjie Dong, Shuguang Liu, Haicheng Zhang

School of Natural Resources: Faculty Publications

Accurate estimates of gross primary production (GPP) for croplands are needed to assess carbon cycle and crop yield. Satellite-based models have been developed to monitor spatial and temporal GPP patterns. However, there are still large uncertainties in estimating cropland GPP. This study compares three light use efficiency (LUE) models (MODIS-GPP, EC-LUE, and VPM) with eddy-covariance measurements at three adjacent AmeriFlux crop sites located near Mead, Nebraska, USA. These sites have different croprotation systems (continuous maize vs. maize and soybean rotated annually) and water management practices (irrigation vs. rainfed). The results reveal several major uncertainties in estimating GPP which need to …


Productivity, Absorbed Photosynthetically Active Radiation, And Light Use Efficiency In Crops: Implications For Remote Sensing Of Crop Primary Production, Anatoly A. Gitelson, Yi Peng, Timothy J. Arkebauer, Andrew E. Suyker Feb 2015

Productivity, Absorbed Photosynthetically Active Radiation, And Light Use Efficiency In Crops: Implications For Remote Sensing Of Crop Primary Production, Anatoly A. Gitelson, Yi Peng, Timothy J. Arkebauer, Andrew E. Suyker

School of Natural Resources: Faculty Publications

Vegetation productivity metrics such as gross primary production (GPP) at the canopy scale are greatly affected by the efficiency of using absorbed radiation for photosynthesis, or light use efficiency (LUE). Thus, close investigation of the relationships between canopy GPP and photosynthetically active radiation absorbed by vegetation is the basis for quantification of LUE. We used multiyear observations over irrigated and rainfed contrasting C3 (soybean) and C4 (maize) crops having different physiology, leaf structure, and canopy architecture to establish the relationships between canopy GPP and radiation absorbed by vegetation and quantify LUE. Although multiple LUE definitions are reported in the literature, …