Open Access. Powered by Scholars. Published by Universities.®
Physical Sciences and Mathematics Commons™
Open Access. Powered by Scholars. Published by Universities.®
- Publication
Articles 1 - 2 of 2
Full-Text Articles in Physical Sciences and Mathematics
Sensitivity Of The Relationship Between Antarctic Ice Shelves And Iron Supply To Projected Changes In The Atmospheric Forcing, Michael S. Dinniman, Pierre St-Laurent, Kevin R. Arrigo, Eileen E. Hofmann, Gert L. Van Dijken
Sensitivity Of The Relationship Between Antarctic Ice Shelves And Iron Supply To Projected Changes In The Atmospheric Forcing, Michael S. Dinniman, Pierre St-Laurent, Kevin R. Arrigo, Eileen E. Hofmann, Gert L. Van Dijken
CCPO Publications
Upward advection or mixing of iron-rich deep waters due to circulation changes driven by the rate of basal ice shelf melt was shown to be a primary control on chlorophyll a production in coastal polynyas over the Antarctic continental shelf. Here, the effects of atmospheric changes projected in 2100 on this relationship were examined with a 5-km resolution ocean/sea ice/ice shelf model of the Southern Ocean with different simulated dissolved iron sources and idealized biological uptake. The atmospheric changes are added as idealized increments to the forcing. Inclusion of a poleward shift and strengthening of the winds, increased precipitation, and …
Authigenic Iron Is A Significant Component Of Oceanic Labile Particulate Iron Inventories, Laura E. Sofen, Olga A. Antipova, Kristen N. Buck, Salvatore Caprara, Lauren Chacho, Rodney J. Johnson, Gabriella Kim, Peter Morton, Daniel C. Ohnemus, Sara Rauschenberg, Peter N. Sedwick, Alessandro Tagliabue, Benjamin S. Twining
Authigenic Iron Is A Significant Component Of Oceanic Labile Particulate Iron Inventories, Laura E. Sofen, Olga A. Antipova, Kristen N. Buck, Salvatore Caprara, Lauren Chacho, Rodney J. Johnson, Gabriella Kim, Peter Morton, Daniel C. Ohnemus, Sara Rauschenberg, Peter N. Sedwick, Alessandro Tagliabue, Benjamin S. Twining
OES Faculty Publications
Particulate phases transport trace metals (TM) and thereby exert a major control on TM distribution in the ocean. Particulate TMs can be classified by their origin as lithogenic (crustal material), biogenic (cellular), or authigenic (formed in situ), but distinguishing these fractions analytically in field samples is a challenge often addressed using operational definitions and assumptions. These different phases require accurate characterization because they have distinct roles in the biogeochemical iron cycle. Particles collected from the upper 2,000 m of the northwest subtropical Atlantic Ocean over four seasonal cruises throughout 2019 were digested with a chemical leach to operationally distinguish labile …