Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Earth Sciences

PDF

School of Natural Resources: Faculty Publications

Gross primary production

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Productivity, Absorbed Photosynthetically Active Radiation, And Light Use Efficiency In Crops: Implications For Remote Sensing Of Crop Primary Production, Anatoly A. Gitelson, Yi Peng, Timothy J. Arkebauer, Andrew E. Suyker Feb 2015

Productivity, Absorbed Photosynthetically Active Radiation, And Light Use Efficiency In Crops: Implications For Remote Sensing Of Crop Primary Production, Anatoly A. Gitelson, Yi Peng, Timothy J. Arkebauer, Andrew E. Suyker

School of Natural Resources: Faculty Publications

Vegetation productivity metrics such as gross primary production (GPP) at the canopy scale are greatly affected by the efficiency of using absorbed radiation for photosynthesis, or light use efficiency (LUE). Thus, close investigation of the relationships between canopy GPP and photosynthetically active radiation absorbed by vegetation is the basis for quantification of LUE. We used multiyear observations over irrigated and rainfed contrasting C3 (soybean) and C4 (maize) crops having different physiology, leaf structure, and canopy architecture to establish the relationships between canopy GPP and radiation absorbed by vegetation and quantify LUE. Although multiple LUE definitions are reported in the literature, …


Interannual And Spatial Impacts Of Phenological Transitions, Growing Season Length, And Spring And Autumn Temperatures On Carbon Sequestration: A North America Flux Data Synthesis, Chaoyang Wu, Alemu Gonsamo, Jing Ming Chen, Werner A. Kurz, David T. Price, Peter M. Lafleur, Rachhpal S. Jassal, Danilo Dragoni, Gil Bohrer, Christopher M. Gough, Shashi B. Verma, Andrew E. Suyker, J. William Munger Jan 2012

Interannual And Spatial Impacts Of Phenological Transitions, Growing Season Length, And Spring And Autumn Temperatures On Carbon Sequestration: A North America Flux Data Synthesis, Chaoyang Wu, Alemu Gonsamo, Jing Ming Chen, Werner A. Kurz, David T. Price, Peter M. Lafleur, Rachhpal S. Jassal, Danilo Dragoni, Gil Bohrer, Christopher M. Gough, Shashi B. Verma, Andrew E. Suyker, J. William Munger

School of Natural Resources: Faculty Publications

Understanding feedbacks of ecosystem carbon sequestration to climate change is an urgent step in developing future ecosystem models. Using 187 site-years of flux data observed at 24 sites covering three plant functional types (i.e. evergreen forests (EF), deciduous forests (DF) and non-forest ecosystems (NF) (e.g., crop, grassland, wetland)) in North America, we present an analysis of both interannual and spatial relationships between annual net ecosystem production (NEP) and phenological indicators, including the flux-based carbon uptake period (CUP) and its transitions, degree-day-derived growing season length (GSL), and spring and autumn temperatures. Diverse responses were acquired between annul NEP and these indicators …