Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 41

Full-Text Articles in Physical Sciences and Mathematics

Automated Identification And Mapping Of Interesting Mineral Spectra In Crism Images, Arun M. Saranathan Mar 2024

Automated Identification And Mapping Of Interesting Mineral Spectra In Crism Images, Arun M. Saranathan

Doctoral Dissertations

The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) has proven to be an invaluable tool for the mineralogical analysis of the Martian surface. It has been crucial in identifying and mapping the spatial extents of various minerals. Primarily, the identification and mapping of these mineral spectral-shapes have been performed manually. Given the size of the CRISM image dataset, manual analysis of the full dataset would be arduous/infeasible. This dissertation attempts to address this issue by describing an (machine learning based) automated processing pipeline for CRISM data that can be used to identify and map the unique mineral signatures present in …


Data To Science With Ai And Human-In-The-Loop, Gustavo Perez Sarabia Mar 2024

Data To Science With Ai And Human-In-The-Loop, Gustavo Perez Sarabia

Doctoral Dissertations

AI has the potential to accelerate scientific discovery by enabling scientists to analyze vast datasets more efficiently than traditional methods. For example, this thesis considers the detection of star clusters in high-resolution images of galaxies taken from space telescopes, as well as studying bird migration from RADAR images. In these applications, the goal is to make measurements to answer scientific questions, such as how the star formation rate is affected by mass, or how the phenology of bird migration is influenced by climate change. However, current computer vision systems are far from perfect for conducting these measurements directly. They may …


Generalized Differentiable Neural Architecture Search With Performance And Stability Improvements, Emily J. Herron Dec 2023

Generalized Differentiable Neural Architecture Search With Performance And Stability Improvements, Emily J. Herron

Doctoral Dissertations

This work introduces improvements to the stability and generalizability of Cyclic DARTS (CDARTS). CDARTS is a Differentiable Architecture Search (DARTS)-based approach to neural architecture search (NAS) that uses a cyclic feedback mechanism to train search and evaluation networks concurrently, thereby optimizing the search process by enforcing that the networks produce similar outputs. However, the dissimilarity between the loss functions used by the evaluation networks during the search and retraining phases results in a search-phase evaluation network, a sub-optimal proxy for the final evaluation network utilized during retraining. ICDARTS, a revised algorithm that reformulates the search phase loss functions to ensure …


Exact Models, Heuristics, And Supervised Learning Approaches For Vehicle Routing Problems, Zefeng Lyu Dec 2023

Exact Models, Heuristics, And Supervised Learning Approaches For Vehicle Routing Problems, Zefeng Lyu

Doctoral Dissertations

This dissertation presents contributions to the field of vehicle routing problems by utilizing exact methods, heuristic approaches, and the integration of machine learning with traditional algorithms. The research is organized into three main chapters, each dedicated to a specific routing problem and a unique methodology. The first chapter addresses the Pickup and Delivery Problem with Transshipments and Time Windows, a variant that permits product transfers between vehicles to enhance logistics flexibility and reduce costs. To solve this problem, we propose an efficient mixed-integer linear programming model that has been shown to outperform existing ones. The second chapter discusses a practical …


Generative Adversarial Game With Tailored Quantum Feature Maps For Enhanced Classification, Anais Sandra Nguemto Guiawa Dec 2023

Generative Adversarial Game With Tailored Quantum Feature Maps For Enhanced Classification, Anais Sandra Nguemto Guiawa

Doctoral Dissertations

In the burgeoning field of quantum machine learning, the fusion of quantum computing and machine learning methodologies has sparked immense interest, particularly with the emergence of noisy intermediate-scale quantum (NISQ) devices. These devices hold the promise of achieving quantum advantage, but they grapple with limitations like constrained qubit counts, limited connectivity, operational noise, and a restricted set of operations. These challenges necessitate a strategic and deliberate approach to crafting effective quantum machine learning algorithms.

This dissertation revolves around an exploration of these challenges, presenting innovative strategies that tailor quantum algorithms and processes to seamlessly integrate with commercial quantum platforms. A …


Towards Robust Long-Form Text Generation Systems, Kalpesh Krishna Nov 2023

Towards Robust Long-Form Text Generation Systems, Kalpesh Krishna

Doctoral Dissertations

Text generation is an important emerging AI technology that has seen significant research advances in recent years. Due to its closeness to how humans communicate, mastering text generation technology can unlock several important applications such as intelligent chat-bots, creative writing assistance, or newer applications like task-agnostic few-shot learning. Most recently, the rapid scaling of large language models (LLMs) has resulted in systems like ChatGPT, capable of generating fluent, coherent and human-like text. However, despite their remarkable capabilities, LLMs still suffer from several limitations, particularly when generating long-form text. In particular, (1) long-form generated text is filled with factual inconsistencies to …


Foundations Of Node Representation Learning, Sudhanshu Chanpuriya Nov 2023

Foundations Of Node Representation Learning, Sudhanshu Chanpuriya

Doctoral Dissertations

Low-dimensional node representations, also called node embeddings, are a cornerstone in the modeling and analysis of complex networks. In recent years, advances in deep learning have spurred development of novel neural network-inspired methods for learning node representations which have largely surpassed classical 'spectral' embeddings in performance. Yet little work asks the central questions of this thesis: Why do these novel deep methods outperform their classical predecessors, and what are their limitations? We pursue several paths to answering these questions. To further our understanding of deep embedding methods, we explore their relationship with spectral methods, which are better understood, and show …


Bayesian Structural Causal Inference With Probabilistic Programming, Sam A. Witty Nov 2023

Bayesian Structural Causal Inference With Probabilistic Programming, Sam A. Witty

Doctoral Dissertations

Reasoning about causal relationships is central to the human experience. This evokes a natural question in our pursuit of human-like artificial intelligence: how might we imbue intelligent systems with similar causal reasoning capabilities? Better yet, how might we imbue intelligent systems with the ability to learn cause and effect relationships from observation and experimentation? Unfortunately, reasoning about cause and effect requires more than just data: it also requires partial knowledge about data generating mechanisms. Given this need, our task then as computational scientists is to design data structures for representing partial causal knowledge, and algorithms for updating that knowledge in …


Graph Representation Learning With Box Embeddings, Dongxu Zhang Aug 2023

Graph Representation Learning With Box Embeddings, Dongxu Zhang

Doctoral Dissertations

Graphs are ubiquitous data structures, present in many machine-learning tasks, such as link prediction of products and node classification of scientific papers. As gradient descent drives the training of most modern machine learning architectures, the ability to encode graph-structured data using a differentiable representation is essential to make use of this data. Most approaches encode graph structure in Euclidean space, however, it is non-trivial to model directed edges. The naive solution is to represent each node using a separate "source" and "target" vector, however, this can decouple the representation, making it harder for the model to capture information within longer …


Evidence Assisted Learning For Clinical Decision Support Systems, Bhanu Pratap Singh Rawat Aug 2023

Evidence Assisted Learning For Clinical Decision Support Systems, Bhanu Pratap Singh Rawat

Doctoral Dissertations

Clinical decision support systems (CDSS) provide intelligently filtered knowledge and patient-specific and population information to the clinicians, nursing staff and healthcare professionals. CDSS can significantly improve the quality, safety, efficiency and effectiveness of health care. Over the last decade, American hospitals have adopted electronic health records (EHRs) widely resulting in a massive collection of clinical notes such as admission notes, physician notes, nursing notes and discharge summaries. For the past couple of decades, most of the work in CDSS has been focused on developing knowledge-based systems using structured data such as medications and ICD codes. In contrast, the EHR notes …


Insights Into The Application Of Deep Reinforcement Learning In Healthcare And Materials Science, Benjamin R. Smith Aug 2023

Insights Into The Application Of Deep Reinforcement Learning In Healthcare And Materials Science, Benjamin R. Smith

Doctoral Dissertations

Reinforcement learning (RL) is a type of machine learning designed to optimize sequential decision-making. While controlled environments have served as a foundation for RL research, due to the growth in data volumes and deep learning methods, it is now increasingly being applied to real-world problems. In our work, we explore and attempt to overcome challenges that occur when applying RL to solve problems in healthcare and materials science.

First, we explore how issues in bias and data completeness affect healthcare applications of RL. To understand how bias has already been considered in this area, we survey the literature for existing …


Multidimensional Investigation Of Tennessee’S Urban Forest, Jillian L. Gorrell May 2023

Multidimensional Investigation Of Tennessee’S Urban Forest, Jillian L. Gorrell

Doctoral Dissertations

Preserving existing trees in urban areas and properly cultivating urban forest conservation and management opportunities is valuable to the ever-growing urban environment and necessary for creating optimal experiences and educational tools to meet the needs of increasing urban populations. This dissertation contains studies investigating several facets of the urban forest, including environmental effects of deforestation and urbanization, tree equity, and urban forest facility management and accessibility. Community education and outreach at arboreta about the importance of the tree canopy can help promote environmental stewardship. A digital questionnaire was electronically distributed to representatives of arboreta certified through the Tennessee Division of …


Enhancing The Performance Of The Mtcnn For The Classification Of Cancer Pathology Reports: From Data Annotation To Model Deployment, Kevin De Angeli Dec 2022

Enhancing The Performance Of The Mtcnn For The Classification Of Cancer Pathology Reports: From Data Annotation To Model Deployment, Kevin De Angeli

Doctoral Dissertations

Information contained in electronic health records (EHR) combined with the latest advances in machine learning (ML) have the potential to revolutionize the medical sciences. In particular, information contained in cancer pathology reports is essential to investigate cancer trends across the country. Unfortunately, large parts of information in EHRs are stored in the form of unstructured, free-text which limit their usability and research potential. To overcome this accessibility barrier, cancer registries depend on expert personnel who read, interpret, and extract relevant information. Naturally, as the number of stored pathology reports increases every day, depending on human experts presents scalability challenges. Recently, …


Unobtrusive Assessment Of Upper-Limb Motor Impairment Using Wearable Inertial Sensors, Brandon R. Oubre Oct 2022

Unobtrusive Assessment Of Upper-Limb Motor Impairment Using Wearable Inertial Sensors, Brandon R. Oubre

Doctoral Dissertations

Many neurological diseases cause motor impairments that limit autonomy and reduce health-related quality of life. Upper-limb motor impairments, in particular, significantly hamper the performance of essential activities of daily living, such as eating, bathing, and changing clothing. Assessment of impairment is necessary for tracking disease progression, measuring the efficacy of interventions, and informing clinical decision making. Impairment is currently assessed by trained clinicians using semi-quantitative rating scales that are limited by their reliance on subjective, visual assessments. Furthermore, existing scales are often burdensome to administer and do not capture patients' motor performance in home and community settings, resulting in a …


Approximate Bayesian Deep Learning For Resource-Constrained Environments, Meet Prakash Vadera Oct 2022

Approximate Bayesian Deep Learning For Resource-Constrained Environments, Meet Prakash Vadera

Doctoral Dissertations

Deep learning models have shown promising results in areas including computer vision, natural language processing, speech recognition, and more. However, existing point estimation-based training methods for these models may result in predictive uncertainties that are not well calibrated, including the occurrence of confident errors. Approximate Bayesian inference methods can help address these issues in a principled way by accounting for uncertainty in model parameters. However, these methods are computationally expensive both when computing approximations to the parameter posterior and when using an approximate parameter posterior to make predictions. They can also require significantly more storage than point-estimated models. In this …


Probabilistic Commonsense Knowledge, Xiang Li Oct 2022

Probabilistic Commonsense Knowledge, Xiang Li

Doctoral Dissertations

Commonsense knowledge is critical to achieving artificial general intelligence. This shared common background knowledge is implicit in all human communication, facilitating efficient information exchange and understanding. But commonsense research is hampered by its immense quantity of knowledge because an explicit categorization is impossible. Furthermore, a plumber could repair a sink in a kitchen or a bathroom, indicating that common sense reveals a probable assumption rather than a definitive answer. To align with these properties of commonsense fundamentally, we want to not only model but also evaluate such knowledge human-like using abstractions and probabilistic principles. Traditional combinatorial probabilistic models, e.g., probabilistic …


Hyperspectral Unmixing: A Theoretical Aspect And Applications To Crism Data Processing, Yuki Itoh Oct 2022

Hyperspectral Unmixing: A Theoretical Aspect And Applications To Crism Data Processing, Yuki Itoh

Doctoral Dissertations

Hyperspectral imaging has been deployed in earth and planetary remote sensing, and has contributed the development of new methods for monitoring the earth environment and new discoveries in planetary science. It has given scientists and engineers a new way to observe the surface of earth and planetary bodies by measuring the spectroscopic spectrum at a pixel scale. Hyperspectal images require complex processing before practical use. One of the important goals of hyperspectral imaging is to obtain the images of reflectance spectrum. A raw image obtained by hyperspectral remote sensing usually undergoes conversion to a physical quantity representing the intensity of …


Combinatorial Algorithms For Graph Discovery And Experimental Design, Raghavendra K. Addanki Oct 2022

Combinatorial Algorithms For Graph Discovery And Experimental Design, Raghavendra K. Addanki

Doctoral Dissertations

In this thesis, we study the design and analysis of algorithms for discovering the structure and properties of an unknown graph, with applications in two different domains: causal inference and sublinear graph algorithms. In both these domains, graph discovery is possible using restricted forms of experiments, and our objective is to design low-cost experiments. First, we describe efficient experimental approaches to the causal discovery problem, which in its simplest form, asks us to identify the causal relations (edges of the unknown graph) between variables (vertices of the unknown graph) of a given system. For causal discovery, we study algorithms …


Better Understanding Genomic Architecture With The Use Of Applied Statistics And Explainable Artificial Intelligence, Jonathon C. Romero Aug 2022

Better Understanding Genomic Architecture With The Use Of Applied Statistics And Explainable Artificial Intelligence, Jonathon C. Romero

Doctoral Dissertations

With the continuous improvements in biological data collection, new techniques are needed to better understand the complex relationships in genomic and other biological data sets. Explainable Artificial Intelligence (X-AI) techniques like Iterative Random Forest (iRF) excel at finding interactions within data, such as genomic epistasis. Here, the introduction of new methods to mine for these complex interactions is shown in a variety of scenarios. The application of iRF as a method for Genomic Wide Epistasis Studies shows that the method is robust in finding interacting sets of features in synthetic data, without requiring the exponentially increasing computation time of many …


Machine Learning For Earth Systems Modeling, Analysis And Predictability, Linsey Passarella Aug 2022

Machine Learning For Earth Systems Modeling, Analysis And Predictability, Linsey Passarella

Doctoral Dissertations

Artificial intelligence (AI) and machine learning (ML) methods and applications have been continuously explored in many areas of scientific research. While these methods have lead to many advances in climate science, there remains room for growth especially in Earth System Modeling, analysis and predictability. Due to their high computational expense and large volumes of complex data they produce, earth system models (ESMs) provide an abundance of potential for enhancing both our understanding of the climate system as well as improving performance of ESMs themselves using ML techniques. Here I demonstrate 3 specific areas of development using ML: statistical downscaling, predictability …


Scalable Data Analytics For Relational Databases, Graphs And Videos, Fubao Wu Jun 2022

Scalable Data Analytics For Relational Databases, Graphs And Videos, Fubao Wu

Doctoral Dissertations

Data analytics is to analyze raw data and mine insights, trends, and patterns from them. Due to the dramatic increase in data volume and size in recent years with the development of big data and cloud storage, big data analytics algorithms and techniques have been faced with more challenges. Moreover, there are various types of data formats, such as relational databases, text data, audio data, and image/video data. It is challenging to generate a unified framework or algorithm for data analytics on various data formats. Different data formats still need refined and scalable algorithms. In this dissertation, we explore three …


Nonparametric Contextual Reasoning For Question Answering Over Large Knowledge Bases, Rajarshi Das Jun 2022

Nonparametric Contextual Reasoning For Question Answering Over Large Knowledge Bases, Rajarshi Das

Doctoral Dissertations

Question answering (QA) over knowledge bases provides a user-friendly way of accessing the massive amount of information stored in them. We have experienced tremendous progress in the performance of QA systems, thanks to the recent advancements in representation learning by deep neural models. However, such deep models function as black boxes with an opaque reasoning process, are brittle, and offer very limited control (e.g. for debugging an erroneous model prediction). It is also unclear how to reliably add or update knowledge stored in their model parameters. This thesis proposes nonparametric models for question answering that disentangle logic from knowledge. For …


Models And Machine Learning Techniques For Improving The Planning And Operation Of Electricity Systems In Developing Regions, Santiago Correa Cardona Jun 2022

Models And Machine Learning Techniques For Improving The Planning And Operation Of Electricity Systems In Developing Regions, Santiago Correa Cardona

Doctoral Dissertations

The enormous innovation in computational intelligence has disrupted the traditional ways we solve the main problems of our society and allowed us to make more data-informed decisions. Energy systems and the ways we deliver electricity are not exceptions to this trend: cheap and pervasive sensing systems and new communication technologies have enabled the collection of large amounts of data that are being used to monitor and predict in real-time the behavior of this infrastructure. Bringing intelligence to the power grid creates many opportunities to integrate new renewable energy sources more efficiently, facilitate grid planning and expansion, improve reliability, optimize electricity …


Improving The Programmability Of Networked Energy Systems, Noman Bashir Jun 2022

Improving The Programmability Of Networked Energy Systems, Noman Bashir

Doctoral Dissertations

Global warming and climate change have underscored the need for designing sustainable energy systems. Sustainable energy systems, e.g., smart grids, green data centers, differ from the traditional systems in significant ways and present unique challenges to system designers and operators. First, intermittent renewable energy resources power these systems, which break the notion of infinite, reliable, and controllable power supply. Second, these systems come in varying sizes, spanning over large geographical regions. The control of these dispersed and diverse systems raises scalability challenges. Third, the performance modeling and fault detection in sustainable energy systems is still an active research area. Finally, …


Iterative Random Forest Based High Performance Computing Methods Applied To Biological Systems And Human Health, Angelica M. Walker May 2022

Iterative Random Forest Based High Performance Computing Methods Applied To Biological Systems And Human Health, Angelica M. Walker

Doctoral Dissertations

As technology improves, the field of biology has increasingly utilized high performance computing techniques to analyze big data and provide insights into biological systems. A reproducible, efficient, and effective method is required to analyze these large datasets of varying types into interpretable results. Iterative Random Forest (iRF) is an explainable supervised learner that makes few assumptions about the relationships between variables and is able to capture complex interactions that are common in biological systems. This forest based learner is the basis of iRF-Leave One Out Prediction (iRF-LOOP), an algorithm that uses a matrix of data to produce all-to-all predictive networks. …


Mixture Models In Machine Learning, Soumyabrata Pal Mar 2022

Mixture Models In Machine Learning, Soumyabrata Pal

Doctoral Dissertations

Modeling with mixtures is a powerful method in the statistical toolkit that can be used for representing the presence of sub-populations within an overall population. In many applications ranging from financial models to genetics, a mixture model is used to fit the data. The primary difficulty in learning mixture models is that the observed data set does not identify the sub-population to which an individual observation belongs. Despite being studied for more than a century, the theoretical guarantees of mixture models remain unknown for several important settings. In this thesis, we look at three groups of problems. The first part …


Auto-Curation Of Large Evolving Image Datasets, Sara Mousavicheshmehkaboodi Dec 2021

Auto-Curation Of Large Evolving Image Datasets, Sara Mousavicheshmehkaboodi

Doctoral Dissertations

Large image collections are becoming common in many fields and offer tantalizing opportunities to transform how research, work, and education are conducted if the information and associated insights could be extracted from them. However, major obstacles to this vision exist. First, image datasets with associated metadata contain errors and need to be cleaned and organized to be easily explored and utilized. Second, such collections typically lack the necessary context or may have missing attributes that need to be recovered. Third, such datasets are domain-specific and require human expert involvement to make the right interpretation of the image content. Fourth, the …


Human Mobility Monitoring Using Wifi: Analysis, Modeling, And Applications, Amee Trivedi Oct 2021

Human Mobility Monitoring Using Wifi: Analysis, Modeling, And Applications, Amee Trivedi

Doctoral Dissertations

Understanding and modeling humans and device mobility has fundamental importance in mobile computing, with implications ranging from network design and location-aware technologies to urban infrastructure planning. Today's users carry a plethora of devices such as smartphones, laptops, tablets, and smartwatches, with each device offering a different set of services resulting in different usage and mobility leading to the research question of understanding and modeling multiple user device trajectories. Additionally, prior research on mobility focuses on outdoor mobility when it is known that users spend 80% of their time indoors resulting in wide gaps in knowledge in the area of indoor …


Social Measurement And Causal Inference With Text, Katherine A. Keith Oct 2021

Social Measurement And Causal Inference With Text, Katherine A. Keith

Doctoral Dissertations

The digital age has dramatically increased access to large-scale collections of digitized text documents. These corpora include, for example, digital traces from social media, decades of archived news reports, and transcripts of spoken interactions in political, legal, and economic spheres. For social scientists, this new widespread data availability has potential for improved quantitative analysis of relationships between language use and human thought, actions, and societal structure. However, the large-scale nature of these collections means that traditional manual approaches to analyzing content are extremely costly and do not scale. Furthermore, incorporating unstructured text data into quantitative analysis is difficult due to …


High-Dimensional Feature Selection And Multi-Level Causal Mediation Analysis With Applications To Human Aging And Cluster-Based Intervention Studies, Hachem Saddiki Oct 2021

High-Dimensional Feature Selection And Multi-Level Causal Mediation Analysis With Applications To Human Aging And Cluster-Based Intervention Studies, Hachem Saddiki

Doctoral Dissertations

Many questions in public health and medicine are fundamentally causal in that our objective is to learn the effect of some exposure, randomized or not, on an outcome of interest. As a result, causal inference frameworks and methodologies have gained interest as a promising tool to reliably answer scientific questions. However, the tasks of identifying and efficiently estimating causal effects from observed data still pose significant challenges under complex data generating scenarios. We focus on (1) high-dimensional settings where the number of variables is orders of magnitude higher than the number of observations; and (2) multi-level settings, where study participants …