Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Cosmology, Relativity, and Gravity

Dartmouth College

Phenomenology

Publication Year

Articles 1 - 6 of 6

Full-Text Articles in Physical Sciences and Mathematics

Brief History Of Curvature, Robert R. Caldwell, Steven S. Gubser Mar 2013

Brief History Of Curvature, Robert R. Caldwell, Steven S. Gubser

Dartmouth Scholarship

The trace of the stress-energy tensor of the cosmological fluid, proportional to the Ricci scalar curvature in general relativity, is determined on cosmic scales for times ranging from the inflationary epoch to the present day in the expanding Universe. The post-inflationary epoch and the thermal history of the relativistic fluid, in particular the QCD transition from asymptotic freedom to confinement and the electroweak phase transition, leave significant imprints on the scalar curvature. These imprints can be of either sign and are orders of magnitude larger than the values that would be obtained by naively extrapolating the pressureless matter of the …


Casimir Forces And Non-Newtonian Gravitation, Roberto Onofrio Oct 2006

Casimir Forces And Non-Newtonian Gravitation, Roberto Onofrio

Dartmouth Scholarship

The search for non-relativistic deviations from Newtonian gravitation can lead to new phenomena signalling the unification of gravity with the other fundamental interactions. Various recent theoretical frameworks indicate a possible window for non-Newtonian forces with gravitational coupling strength in the micrometre range. The major expected background in the same range is attributable to the Casimir force or variants of it if dielectric materials, rather than conducting ones, are considered. Here we review the measurements of the Casimir force performed so far in the micrometre range and how they determine constraints on non-Newtonian gravitation, also discussing the dominant sources of false …


Fine-Tuning Solution For Hybrid Inflation In Dissipative Chaotic Dynamics, Rudnei O. Ramos Nov 2001

Fine-Tuning Solution For Hybrid Inflation In Dissipative Chaotic Dynamics, Rudnei O. Ramos

Dartmouth Scholarship

We study the presence of chaotic behavior in phase space in the preinflationary stage of hybrid inflation models. This is closely related to the problem of initial conditions associated with these inflationary types of model. We then show how an expected dissipative dynamics of fields just before the onset of inflation can solve or ease considerably the problem of initial conditions, driving the system naturally toward inflation. The chaotic behavior of the corresponding dynamical system is studied by computation of the fractal dimension of the boundary in phase space separating inflationary from noninflationary trajectories. The fractal dimension for this boundary …


Shortcuts In The Fifth Dimension, Robert Caldwell, David Langlois Jul 2001

Shortcuts In The Fifth Dimension, Robert Caldwell, David Langlois

Dartmouth Scholarship

If our Universe is a three-brane embedded in a five-dimensional anti-de Sitter spacetime, in which matter is confined to the brane and gravity inhabits an infinite bulk space, then the causal propagation of luminous and gravitational signals is in general different. A gravitational signal traveling between two points on the brane can take a “shortcut” through the bulk, and appear quicker than a photon traveling between the same two points along a geodesic on the brane. Similarly, in a given time interval, a gravitational signal can propagate farther than a luminous signal. We quantify this effect, and analyze the impact …


Affinity For Scalar Fields To Dissipate, Arjun Berera, Rudnei O. Ramos Apr 2001

Affinity For Scalar Fields To Dissipate, Arjun Berera, Rudnei O. Ramos

Dartmouth Scholarship

The zero-temperature effective equation of motion is derived for a scalar field interacting with other fields. For a broad range of cases, involving interaction with as few as one or two fields, dissipative regimes are found for the scalar field system. The zero-temperature limit constitutes a baseline effect that will be prevalent in any general statistical state. Thus, the results found here provide strong evidence that dissipation is the norm not the exception for an interacting scalar field system. For application to inflationary cosmology, this provides convincing evidence that warm inflation could be a natural dynamics once proper treatment of …


Gravitational Waves From Collapsing Vacuum Domains, Marcelo Gleiser, Ronald Roberts Dec 1998

Gravitational Waves From Collapsing Vacuum Domains, Marcelo Gleiser, Ronald Roberts

Dartmouth Scholarship

The breaking of an approximate discrete symmetry, the final stages of a first order phase transition, or a postinflationary biased probability distribution for scalar fields are possible cosmological scenarios characterized by the presence of unstable domain wall networks. Combining analytical and numerical techniques, we show that the nonspherical collapse of these domains can be a powerful source of gravitational waves. We compute their contribution to the stochastic background of gravitational radiation and explore their observability by present and future gravitational wave detectors.