Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Data Processing & Analysis For Atomic Force Microscopy (Afm), Molly Mcdonough, Polievkt Perov, Walter Johnson, Stevan Radojev Dec 2020

Data Processing & Analysis For Atomic Force Microscopy (Afm), Molly Mcdonough, Polievkt Perov, Walter Johnson, Stevan Radojev

Undergraduate Theses and Capstone Projects

Scanning Probe Microscopy (SPM) has become a critical tool for characterization of materials in fields such as physics, material science, chemistry, and biology. Atomic Force Microscopy (AFM) is an increasingly useful technique because of its high resolution in three dimensions, the sample does not need to be conductive, and the technique does not need to take place in vacuum. AFM can image a wide variety of topographies and many different types of materials. AFM can deliver 3D topography information from the angstrom level to the micron scale with high resolution. One of the most important aspects of Atomic Force Microscopy …


Free Charge Carrier Properties In Two-Dimensional Materials And Monoclinic Oxides Studied By Optical Hall Effect, Sean Knight Aug 2020

Free Charge Carrier Properties In Two-Dimensional Materials And Monoclinic Oxides Studied By Optical Hall Effect, Sean Knight

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

In this dissertation, optical Hall effect (OHE) measurements are used to determine the free charge carrier properties of important two-dimensional materials and monoclinic oxides. Two-dimensional material systems have proven useful in high-frequency electronic devices due to their unique properties, such as high mobility, which arise from their two-dimensional nature. Monoclinic oxides exhibit many desirable characteristics, for example low-crystal symmetry which could lead to anisotropic carrier properties. Here, single-crystal monoclinic gallium oxide, an AlInN/GaN-based high-electron-mobility transistor (HEMT) structure, and epitaxial graphene are studied as examples. To characterize these material systems, the OHE measurement technique is employed. The OHE is a physical …


Size-Controlled Synthesis Of Nickel Nanoparticles Enclosed In Carbon Nanocages, Felicity Peebles, Grigorii Rudakov, Gamini U. Sumanasekera Apr 2020

Size-Controlled Synthesis Of Nickel Nanoparticles Enclosed In Carbon Nanocages, Felicity Peebles, Grigorii Rudakov, Gamini U. Sumanasekera

Undergraduate Arts and Research Showcase

We have demonstrated a simple, scalable, and tunable method of obtaining densely packed Ni Nanoparticles encapsulated in Carbon Nanocages (Ni@CNCs). Using a facile method, it was shown that via a simple annealing process of precursor based on nickel acetate and citric acid, Ni@CNCs with sizes varying from 5 to 20 nm can be synthesized by changing the heating ramp rate during the synthesis from 25 to 53 °C/min. The final temperature of 600 °C was held for 10 min, and was the same for all the samples. X-Ray Diffraction (XRD) multiple peaks analysis was performed to show large Ni nanoparticles …