Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Condensed Matter Physics

Doctoral Dissertations

Phase separation

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Morphology Characterization Of Low Band Gap Polymer-Based Organic Photovoltaics, Feng Liu Aug 2014

Morphology Characterization Of Low Band Gap Polymer-Based Organic Photovoltaics, Feng Liu

Doctoral Dissertations

In bulk heterojunction (BHJ) thin film organic photovoltaics (OPV), morphology control is critical to obtain good device efficiency. Nanoscale phase separation that creates bicontinuous interpenetrating structure on a size scale commensurate with exciton diffusion length (~10 nm) is thought to be the ideal morphology. Results obtained from this work indicate that morphology can be affected by chemical structure of the polymer, processing conditions, blending ratio and post treatments. Physical properties of the material, such as crystallinity, crystal orientation, material interactions and miscibility, surface energy and particle aggregations are critical for determining the morphology and thus the device performance. Previous investigations …


Growth And Electric Field Control Of Phase Separated Manganites, Hangwen Guo May 2013

Growth And Electric Field Control Of Phase Separated Manganites, Hangwen Guo

Doctoral Dissertations

Perovskite Manganites have received numerous attentions due to exotic behaviors such as colossal magnetoreistance (CMR) and electronic phase separation (EPS). The purpose of my research is to answer fundamental questions about the growth properties of manganites and electric field control of the EPS properties.

Experimental study was conducted on controlling the growth mode of La0.7Sr0.3MnO3[Lanthanum Strontium Manganese Oxide] thin films using pulsed laser deposition. Different thin film morphology, crystallinity and stoichiometry have been observed depending on growth parameters. To understand the microscopic origin, the thermodynamic processes were theoretically analyzed and a growth diagram was …