Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 57

Full-Text Articles in Physical Sciences and Mathematics

Interpretable Learning In Multivariate Big Data Analysis For Network Monitoring, José Camacho, Rasmus Bro, David Kotz Apr 2023

Interpretable Learning In Multivariate Big Data Analysis For Network Monitoring, José Camacho, Rasmus Bro, David Kotz

Dartmouth Scholarship

There is an increasing interest in the development of new data-driven models useful to assess the performance of communication networks. For many applications, like network monitoring and troubleshooting, a data model is of little use if it cannot be interpreted by a human operator. In this paper, we present an extension of the Multivariate Big Data Analysis (MBDA) methodology, a recently proposed interpretable data analysis tool. In this extension, we propose a solution to the automatic derivation of features, a cornerstone step for the application of MBDA when the amount of data is massive. The resulting network monitoring approach allows …


Location Privacy For Mobile Crowd Sensing Through Population Mapping, Minho Shin, Cory Cornelius, Apu Kapadia, Nikos Triandopoulos, David Kotz Jun 2015

Location Privacy For Mobile Crowd Sensing Through Population Mapping, Minho Shin, Cory Cornelius, Apu Kapadia, Nikos Triandopoulos, David Kotz

Dartmouth Scholarship

Opportunistic sensing allows applications to “task” mobile devices to measure context in a target region. For example, one could leverage sensor-equipped vehicles to measure traffic or pollution levels on a particular street or users' mobile phones to locate (Bluetooth-enabled) objects in their vicinity. In most proposed applications, context reports include the time and location of the event, putting the privacy of users at increased risk: even if identifying information has been removed from a report, the accompanying time and location can reveal sufficient information to de-anonymize the user whose device sent the report. We propose and evaluate a novel spatiotemporal …


Privacy In Mobile Technology For Personal Healthcare, Sasikanth Avancha, Amit Baxi, David Kotz Nov 2012

Privacy In Mobile Technology For Personal Healthcare, Sasikanth Avancha, Amit Baxi, David Kotz

Dartmouth Scholarship

Information technology can improve the quality, efficiency, and cost of healthcare. In this survey, we examine the privacy requirements of \emphmobile\/ computing technologies that have the potential to transform healthcare. Such \emphmHealth\/ technology enables physicians to remotely monitor patients' health, and enables individuals to manage their own health more easily. Despite these advantages, privacy is essential for any personal monitoring technology. Through an extensive survey of the literature, we develop a conceptual privacy framework for mHealth, itemize the privacy properties needed in mHealth systems, and discuss the technologies that could support privacy-sensitive mHealth systems. We end with a list of …


An Amulet For Trustworthy Wearable Mhealth, Jacob Sorber, Minho Shin, Ronald Peterson, Cory Cornelius, Shrirang Mare, Aarathi Prasad, Zachary Marois, Emma N. Smithayer, David Kotz Feb 2012

An Amulet For Trustworthy Wearable Mhealth, Jacob Sorber, Minho Shin, Ronald Peterson, Cory Cornelius, Shrirang Mare, Aarathi Prasad, Zachary Marois, Emma N. Smithayer, David Kotz

Dartmouth Scholarship

Mobile technology has significant potential to help revolutionize personal wellness and the delivery of healthcare. Mobile phones, wearable sensors, and home-based tele-medicine devices can help caregivers and individuals themselves better monitor and manage their health. While the potential benefits of this “mHealth” technology include better health, more effective healthcare, and reduced cost, this technology also poses significant security and privacy challenges. In this paper we propose \emphAmulet, an mHealth architecture that provides strong security and privacy guarantees while remaining easy to use, and outline the research and engineering challenges required to realize the Amulet vision.


Anonysense: A System For Anonymous Opportunistic Sensing, Minho Shin, Cory Cornelius, Dan Peebles, Apu Kapadia, David Kotz, Nikos Triandopoulos Feb 2011

Anonysense: A System For Anonymous Opportunistic Sensing, Minho Shin, Cory Cornelius, Dan Peebles, Apu Kapadia, David Kotz, Nikos Triandopoulos

Dartmouth Scholarship

We describe AnonySense, a privacy-aware system for realizing pervasive applications based on collaborative, opportunistic sensing by personal mobile devices. AnonySense allows applications to submit sensing \emphtasks\/ to be distributed across participating mobile devices, later receiving verified, yet anonymized, sensor data \emphreports\/ back from the field, thus providing the first secure implementation of this participatory sensing model. We describe our security goals, threat model, and the architecture and protocols of AnonySense. We also describe how AnonySense can support extended security features that can be useful for different applications. We evaluate the security and feasibility of AnonySense through security analysis and prototype …


Is Bluetooth The Right Technology For Mhealth?, Shrirang Mare, David Kotz Aug 2010

Is Bluetooth The Right Technology For Mhealth?, Shrirang Mare, David Kotz

Dartmouth Scholarship

Many people believe mobile healthcare (mHealth) would help alleviate the rising cost of healthcare and improve the quality of service. Bluetooth, which is the most popular wireless technology for personal medical devices, is used for most of the mHealth sensing applications. In this paper we raise the question – Is Bluetooth the right technology for mHealth? To instigate the discussion we discuss some shortcomings of Bluetooth and also point out an alternative solution.


On Usable Authentication For Wireless Body Area Networks, Cory Cornelius, David Kotz Aug 2010

On Usable Authentication For Wireless Body Area Networks, Cory Cornelius, David Kotz

Dartmouth Scholarship

We examine a specific security problem in wireless body area networks (WBANs), what we call the ıt one body authentication problem. That is, how can we ensure that the wireless sensors in a WBAN are collecting data about one individual and not several individuals. We explore existing solutions to this problem and provide some analysis why these solutions are inadequate. Finally, we provide some direction towards a promising solution to the problem and how it can be used to create a usably secure WBAN.


A Privacy Framework For Mobile Health And Home-Care Systems, David Kotz, Sasikanth Avancha, Amit Baxi Nov 2009

A Privacy Framework For Mobile Health And Home-Care Systems, David Kotz, Sasikanth Avancha, Amit Baxi

Dartmouth Scholarship

In this paper, we consider the challenge of preserving patient privacy in the context of mobile healthcare and home-care systems, that is, the use of mobile computing and communications technologies in the delivery of healthcare or the provision of at-home medical care and assisted living. This paper makes three primary contributions. First, we compare existing privacy frameworks, identifying key differences and shortcomings. Second, we identify a privacy framework for mobile healthcare and home-care systems. Third, we extract a set of privacy properties intended for use by those who design systems and applications for mobile healthcare and home-care systems, linking them …


Activity-Aware Ecg-Based Patient Authentication For Remote Health Monitoring, Janani Sriram, Minho Shin, Tanzeem Choudhury, David Kotz Nov 2009

Activity-Aware Ecg-Based Patient Authentication For Remote Health Monitoring, Janani Sriram, Minho Shin, Tanzeem Choudhury, David Kotz

Dartmouth Scholarship

Mobile medical sensors promise to provide an efficient, accurate, and economic way to monitor patients' health outside the hospital. Patient authentication is a necessary security requirement in remote health monitoring scenarios. The monitoring system needs to make sure that the data is coming from the right person before any medical or financial decisions are made based on the data. Credential-based authentication methods (e.g., passwords, certificates) are not well-suited for remote healthcare as patients could hand over credentials to someone else. Furthermore, one-time authentication using credentials or trait-based biometrics (e.g., face, fingerprints, iris) do not cover the entire monitoring period and …


Activity-Aware Ecg-Based Patient Authentication For Remote Health Monitoring, Janani Sriram, Minho Shin, Tanzeem Choudhury, David Kotz Nov 2009

Activity-Aware Ecg-Based Patient Authentication For Remote Health Monitoring, Janani Sriram, Minho Shin, Tanzeem Choudhury, David Kotz

Dartmouth Scholarship

Mobile medical sensors promise to provide an efficient, accurate, and economic way to monitor patients' health outside the hospital. Patient authentication is a necessary security requirement in remote health monitoring scenarios. The monitoring system needs to make sure that the data is coming from the right person before any medical or financial decisions are made based on the data. Credential-based authentication methods (e.g., passwords, certificates) are not well-suited for remote healthcare as patients could hand over credentials to someone else. Furthermore, one-time authentication using credentials or trait-based biometrics (e.g., face, fingerprints, iris) do not cover the entire monitoring period and …


Deamon: Energy-Efficient Sensor Monitoring, Minho Shin, Patrick Tsang, David Kotz, Cory Cornelius Jun 2009

Deamon: Energy-Efficient Sensor Monitoring, Minho Shin, Patrick Tsang, David Kotz, Cory Cornelius

Dartmouth Scholarship

In people-centric opportunistic sensing, people offer their mobile nodes (such as smart phones) as platforms for collecting sensor data. A sensing application distributes sensing `tasks,' which specify what sensor data to collect and under what conditions to report the data back to the application. To perform a task, mobile nodes may use on-board sensors, a body-area network of personal sensors, or sensors from neighboring nodes that volunteer to contribute their sensing resources. In all three cases, continuous sensor monitoring can drain a node's battery. \par We propose DEAMON (Distributed Energy-Aware MONitoring), an energy-efficient distributed algorithm for long-term sensor monitoring. Our …


The Changing Usage Of A Mature Campus-Wide Wireless Network, Tristan Henderson, David Kotz, Ilya Abyzov Oct 2008

The Changing Usage Of A Mature Campus-Wide Wireless Network, Tristan Henderson, David Kotz, Ilya Abyzov

Dartmouth Scholarship

Wireless Local Area Networks (WLANs) are now commonplace on many academic and corporate campuses. As "Wi-Fi" technology becomes ubiquitous, it is increasingly important to understand trends in the usage of these networks. This paper analyzes an extensive network trace from a mature 802.11 WLAN, including more than 550 access points and 7000 users over seventeen weeks. We employ several measurement techniques, including syslog messages, telephone records, SNMP polling and tcpdump packet captures. This is the largest WLAN study to date, and the first to look at a mature WLAN. We compare this trace to a trace taken after the network's …


Poster Abstract: Reliable People-Centric Sensing With Unreliable Voluntary Carriers, Cory Cornelius, Apu Kapadia, David Kotz, Dan Peebles, Minho Shin, Patrick Tsang Jun 2008

Poster Abstract: Reliable People-Centric Sensing With Unreliable Voluntary Carriers, Cory Cornelius, Apu Kapadia, David Kotz, Dan Peebles, Minho Shin, Patrick Tsang

Dartmouth Scholarship

As sensor technology becomes increasingly easy to integrate into personal devices such as mobile phones, clothing, and athletic equipment, there will be new applications involving opportunistic, people-centric sensing. These applications, which gather information about human activities and personal social context, raise many security and privacy challenges. In particular, data integrity is important for many applications, whether using traffic data for city planning or medical data for diagnosis. Although our AnonySense system (presented at MobiSys) addresses privacy in people-centric sensing, protecting data integrity in people-centric sensing still remains a challenge. Some mechanisms to protect privacy provide anonymity, and thus provide limited …


Anonysense: Opportunistic And Privacy-Preserving Context Collection, Apu Kapadia, Nikos Triandopoulos, Cory Cornelius, Dan Peebles, David Kotz May 2008

Anonysense: Opportunistic And Privacy-Preserving Context Collection, Apu Kapadia, Nikos Triandopoulos, Cory Cornelius, Dan Peebles, David Kotz

Dartmouth Scholarship

Opportunistic sensing allows applications to “task” mobile devices to measure context in a target region. For example, one could leverage sensor-equipped vehicles to measure traffic or pollution levels on a particular street, or users' mobile phones to locate (Bluetooth-enabled) objects in their neighborhood. In most proposed applications, context reports include the time and location of the event, putting the privacy of users at increased risk—even if a report has been anonymized, the accompanying time and location can reveal sufficient information to deanonymize the user whose device sent the report. \par We propose AnonySense, a general-purpose architecture for leveraging users' mobile …


Evaluating Opportunistic Routing Protocols With Large Realistic Contact Traces, Libo Song, David Kotz Sep 2007

Evaluating Opportunistic Routing Protocols With Large Realistic Contact Traces, Libo Song, David Kotz

Dartmouth Scholarship

Traditional mobile ad hoc network (MANET) routing protocols assume that contemporaneous end-to-end communication paths exist between data senders and receivers. In some mobile ad hoc networks with a sparse node population, an end-to-end communication path may break frequently or may not exist at any time. Many routing protocols have been proposed in the literature to address the problem, but few were evaluated in a realistic “opportunistic” network setting. We use simulation and contact traces (derived from logs in a production network) to evaluate and compare five existing protocols: direct-delivery, epidemic, random, PRoPHET, and Link-State, as well as our own proposed …


Periodic Properties Of User Mobility And Access-Point Popularity, Minkyong Kim, David Kotz Aug 2007

Periodic Properties Of User Mobility And Access-Point Popularity, Minkyong Kim, David Kotz

Dartmouth Scholarship

Understanding user mobility and its effect on access points (APs) is important in designing location-aware systems and wireless networks. Although various studies of wireless networks have provided useful insights, it is hard to apply them to other situations. Here we present a general methodology for extracting mobility information from wireless network traces, and for classifying mobile users and APs. We used the Fourier transform to reveal important periods and chose the two strongest periods to serve as parameters to a classification system based on Bayes' theory. Analysis of 1-month traces shows that while a daily pattern is common among both …


Evaluating Next Cell Predictors With Extensive Wi-Fi Mobility Data, Libo Song, David Kotz, Ravi Jain, Xiaoning He Dec 2006

Evaluating Next Cell Predictors With Extensive Wi-Fi Mobility Data, Libo Song, David Kotz, Ravi Jain, Xiaoning He

Dartmouth Scholarship

Location is an important feature for many applications, and wireless networks can better serve their clients by anticipating client mobility. As a result, many location predictors have been proposed in the literature, though few have been evaluated with empirical evidence. This paper reports on the results of the first extensive empirical evaluation of location predictors, using a two-year trace of the mobility patterns of over 6,000 users on Dartmouth's campus-wide Wi-Fi wireless network. The surprising results provide critical evidence for anyone designing or using mobility predictors. \par We implemented and compared the prediction accuracy of several location predictors drawn from …


Mobicom Poster Abstract: Bandwidth Reservation Using Wlan Handoff Prediction, Libo Song, Udayan Deshpande, Ulaş C. Kozat, David Kotz, Ravi Jain Oct 2006

Mobicom Poster Abstract: Bandwidth Reservation Using Wlan Handoff Prediction, Libo Song, Udayan Deshpande, Ulaş C. Kozat, David Kotz, Ravi Jain

Dartmouth Scholarship

Many network services may be improved or enabled by successful predictions of users' future mobility. The success of predictions depend on how much accuracy can be achieved on real data and on the sensitivity of particular applications to this achievable accuracy. We investigate these issues for the case of advanced bandwidth reservation using real WLAN traces collected on the Dartmouth College campus.


Scalability In A Secure Distributed Proof System, Kazuhiro Minami, David Kotz May 2006

Scalability In A Secure Distributed Proof System, Kazuhiro Minami, David Kotz

Dartmouth Scholarship

A logic-based language is often adopted in systems for pervasive computing, because it provides a convenient way to define rules that change the behavior of the systems dynamically. Those systems might define rules that refer to the users' context information to provide context-aware services. For example, a smart-home application could define rules referring to the location of a user to control the light of a house automatically. In general, the context information is maintained in different administrative domains, and it is, therefore, desirable to construct a proof in a distributed way while preserving each domain's confidentiality policies. In this paper, …


Risks Of Using Ap Locations Discovered Through War Driving, Minkyong Kim, Jeffrey J. Fielding, David Kotz May 2006

Risks Of Using Ap Locations Discovered Through War Driving, Minkyong Kim, Jeffrey J. Fielding, David Kotz

Dartmouth Scholarship

Many pervasive-computing applications depend on knowledge of user location. Because most current location-sensing techniques work only either indoors or outdoors, researchers have started using 802.11 beacon frames from access points (APs) to provide broader coverage. To use 802.11 beacons, they need to know AP locations. Because the actual locations are often unavailable, they use estimated locations from \em war driving. But these estimated locations may be different from actual locations. In this paper, we analyzed the errors in these estimates and the effect of these errors on other applications that depend on them. We found that the estimated AP locations …


Extracting A Mobility Model From Real User Traces, Minkyong Kim, David Kotz, Songkuk Kim Apr 2006

Extracting A Mobility Model From Real User Traces, Minkyong Kim, David Kotz, Songkuk Kim

Dartmouth Scholarship

Understanding user mobility is critical for simulations of mobile devices in a wireless network, but current mobility models often do not reflect real user movements. In this paper, we provide a foundation for such work by exploring mobility characteristics in traces of mobile users. We present a method to estimate the physical location of users from a large trace of mobile devices associating with access points in a wireless network. Using this method, we extracted tracks of always-on Wi-Fi devices from a 13-month trace. We discovered that the speed and pause time each follow a log-normal distribution and that the …


Predictability Of Wlan Mobility And Its Effects On Bandwidth Provisioning, Libo Song, Udayan Deshpande, Ulaş C. Kozat, David Kotz, Ravi Jain Apr 2006

Predictability Of Wlan Mobility And Its Effects On Bandwidth Provisioning, Libo Song, Udayan Deshpande, Ulaş C. Kozat, David Kotz, Ravi Jain

Dartmouth Scholarship

Wireless local area networks (WLANs) are emerging as a popular technology for access to the Internet and enterprise networks. In the long term, the success of WLANs depends on services that support mobile network clients. \par Although other researchers have explored mobility prediction in hypothetical scenarios, evaluating their predictors analytically or with synthetic data, few studies have been able to evaluate their predictors with real user mobility data. As a first step towards filling this fundamental gap, we work with a large data set collected from the Dartmouth College campus-wide wireless network that hosts more than 500 access points and …


Modeling Users' Mobility Among Wifi Access Points, Minkyong Kim, David Kotz Jun 2005

Modeling Users' Mobility Among Wifi Access Points, Minkyong Kim, David Kotz

Dartmouth Scholarship

Modeling movements of users is important for simulating wireless networks, but current models often do not reflect real movements. Using real mobility traces, we can build a mobility model that reflects reality. In building a mobility model, it is important to note that while the number of handheld wireless devices is constantly increasing, laptops are still the majority in most cases. As a laptop is often disconnected from the network while a user is moving, it is not feasible to extract the exact path of the user from network messages. Thus, instead of modeling individual user's movements, we model movements …


Analysis Of A Wi-Fi Hotspot Network, David P. Blinn, Tristan Henderson, David Kotz Jun 2005

Analysis Of A Wi-Fi Hotspot Network, David P. Blinn, Tristan Henderson, David Kotz

Dartmouth Scholarship

Wireless hotspot networks have become increasingly popular in recent years as a means of providing Internet access in public areas such as restaurants and airports. In this paper we present the first study of such a hotspot network. We examine five weeks of SNMP traces from the Verizon Wi-Fi HotSpot network in Manhattan. We find that far more cards associated to the network than logged into it. Most clients used the network infrequently and visited few APs. AP utilization was uneven and the network displayed some unusual patterns in traffic load. Some characteristics were similar to those previously observed in …


Classifying The Mobility Of Users And The Popularity Of Access Points, Minkyong Kim, David Kotz May 2005

Classifying The Mobility Of Users And The Popularity Of Access Points, Minkyong Kim, David Kotz

Dartmouth Scholarship

There is increasing interest in location-aware systems and applications. It is important for any designer of such systems and applications to understand the nature of user and device mobility. Furthermore, an understanding of the effect of user mobility on access points (APs) is also important for designing, deploying, and managing wireless networks. Although various studies of wireless networks have provided insights into different network environments and user groups, it is often hard to apply these findings to other situations, or to derive useful abstract models. \par In this paper, we present a general methodology for extracting mobility information from wireless …


Measuring Wireless Network Usage With The Experience Sampling Method, Tristan Henderson, Denise Anthony, David Kotz Apr 2005

Measuring Wireless Network Usage With The Experience Sampling Method, Tristan Henderson, Denise Anthony, David Kotz

Dartmouth Scholarship

Measuring wireless local area networks has proven useful for characterizing, modeling and provisioning these networks. These measurements are typically taken passively from a vantage point on the network itself. Client devices, or users, are never actively queried. These measurements can indicate \em what is happening on the network, but it can be difficult to infer \em why a particular behavior is occurring. In this paper we use the Experience Sampling Method (ESM) to study wireless network users. We monitored 29 users remotely for one week, and signaled them to fill out a questionnaire whenever interesting wireless behavior was observed. We …


Secure Context-Sensitive Authorization, Kazuhiro Minami, David Kotz Mar 2005

Secure Context-Sensitive Authorization, Kazuhiro Minami, David Kotz

Dartmouth Scholarship

There is a recent trend toward rule-based authorization systems to achieve flexible security policies. Also, new sensing technologies in pervasive computing make it possible to define context-sensitive rules, such as “allow database access only to staff who are currently located in the main office.” However, these rules, or the facts that are needed to verify authority, often involve sensitive context information. This paper presents a secure context-sensitive authorization system that protects confidential information in facts or rules. Furthermore, our system allows multiple hosts in a distributed environment to perform the evaluation of an authorization query in a collaborative way; we …


Policy-Driven Data Dissemination For Context-Aware Applications, Guanling Chen, David Kotz Mar 2005

Policy-Driven Data Dissemination For Context-Aware Applications, Guanling Chen, David Kotz

Dartmouth Scholarship

Context-aware pervasive-computing applications require continuous monitoring of their physical and computational environment to make appropriate adaptation decisions in time. The data streams produced by sensors, however, may overflow the queues on the dissemination path. Traditional flow-control and congestion-control policies either drop data or force the sender to pause. When the data sender is sensing the physical environment, however, a pause is equivalent to dropping data. Instead of arbitrarily dropping data that may contain important events, we present a policy-driven data dissemination service named PACK, based on an overlay-based infrastructure for efficient multicast delivery. PACK enforces application-specified policies that define how …


Experimental Evaluation Of Wireless Simulation Assumptions, David Kotz, Calvin Newport, Robert S. Gray, Jason Liu, Yougu Yuan, Chip Elliot Oct 2004

Experimental Evaluation Of Wireless Simulation Assumptions, David Kotz, Calvin Newport, Robert S. Gray, Jason Liu, Yougu Yuan, Chip Elliot

Dartmouth Scholarship

All analytical and simulation research on ad hoc wireless networks must necessarily model radio propagation using simplifying assumptions. We provide a comprehensive review of six assumptions that are still part of many ad hoc network simulation studies, despite increasing awareness of the need to represent more realistic features, including hills, obstacles, link asymmetries, and unpredictable fading. We use an extensive set of measurements from a large outdoor routing experiment to demonstrate the weakness of these assumptions, and show how these assumptions cause simulation results to differ significantly from experimental results. We close with a series of recommendations for researchers, whether …


The Changing Usage Of A Mature Campus-Wide Wireless Network, Tristan Henderson, David Kotz, Ilya Abyzov Sep 2004

The Changing Usage Of A Mature Campus-Wide Wireless Network, Tristan Henderson, David Kotz, Ilya Abyzov

Dartmouth Scholarship

Wireless Local Area Networks (WLANs) are now commonplace on many academic and corporate campuses. As “Wi-Fi” technology becomes ubiquitous, it is increasingly important to understand trends in the usage of these networks. \par This paper analyzes an extensive network trace from a mature 802.11 WLAN, including more than 550 access points and 7000 users over seventeen weeks. We employ several measurement techniques, including syslogs, telephone records, SNMP polling and tcpdump packet sniffing. This is the largest WLAN study to date, and the first to look at a large, mature WLAN and consider geographic mobility. We compare this trace to a …