Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Computer Sciences

Louisiana Tech University

Doctoral Dissertations

Fault tolerance

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Near-Optimal Scheduling And Decision-Making Models For Reactive And Proactive Fault Tolerance Mechanisms, Nichamon Naksinehaboon Apr 2012

Near-Optimal Scheduling And Decision-Making Models For Reactive And Proactive Fault Tolerance Mechanisms, Nichamon Naksinehaboon

Doctoral Dissertations

As High Performance Computing (HPC) systems increase in size to fulfill computational power demand, the chance of failure occurrences dramatically increases, resulting in potentially large amounts of lost computing time. Fault Tolerance (FT) mechanisms aim to mitigate the impact of failure occurrences to the running applications. However, the overhead of FT mechanisms increases proportionally to the HPC systems' size. Therefore, challenges arise in handling the expensive overhead of FT mechanisms while minimizing the large amount of lost computing time due to failure occurrences.

In this dissertation, a near-optimal scheduling model is built to determine when to invoke a hybrid checkpoint …


Wireless Sensor Network Modeling Using Modified Recurrent Neural Network: Application To Fault Detection, Azzam Issam Moustapha Apr 2008

Wireless Sensor Network Modeling Using Modified Recurrent Neural Network: Application To Fault Detection, Azzam Issam Moustapha

Doctoral Dissertations

Wireless Sensor Networks (WSNs) consist of a large number of sensors, which in turn have their own dynamics. They interact with each other and the base station, which controls the network. In multi-hop wireless sensor networks, information hops from one node to another and finally to the network gateway or base station. Dynamic Recurrent Neural Networks (RNNs) consist of a set of dynamic nodes that provide internal feedback to their own inputs. They can be used to simulate and model dynamic systems such as a network of sensors.

In this dissertation, a dynamic model of wireless sensor networks and its …


Reliability -Aware Optimal Checkpoint /Restart Model In High Performance Computing, Yudan Liu Apr 2007

Reliability -Aware Optimal Checkpoint /Restart Model In High Performance Computing, Yudan Liu

Doctoral Dissertations

Computational power demand for large challenging problems has increasingly driven the physical size of High Performance Computing (HPC) systems. As the system gets larger, it requires more and more components (processor, memory, disk, switch, power supply and so on). Thus, challenges arise in handling reliability of such large-scale systems. In order to minimize the performance loss due to unexpected failures, fault tolerant mechanisms are vital to sustain computational power in such environment. Checkpoint/restart is a common fault tolerant technique which has been widely applied in the single computer system. However, checkpointing in a large-scale HPC environment is much more challenging …