Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Adaptive Grid Based Localized Learning For Multidimensional Data, Sheetal Saini Oct 2012

Adaptive Grid Based Localized Learning For Multidimensional Data, Sheetal Saini

Doctoral Dissertations

Rapid advances in data-rich domains of science, technology, and business has amplified the computational challenges of "Big Data" synthesis necessary to slow the widening gap between the rate at which the data is being collected and analyzed for knowledge. This has led to the renewed need for efficient and accurate algorithms, framework, and algorithmic mechanisms essential for knowledge discovery, especially in the domains of clustering, classification, dimensionality reduction, feature ranking, and feature selection. However, data mining algorithms are frequently challenged by the sparseness due to the high dimensionality of the datasets in such domains which is particularly detrimental to the …


Failure Prediction For High-Performance Computing Systems, Narate Taerat Apr 2012

Failure Prediction For High-Performance Computing Systems, Narate Taerat

Doctoral Dissertations

The failure rate in high-performance computing (HPC) systems continues to escalate as the number of components in these systems increases. This affects the scalability and the performance of parallel applications in large-scale HPC systems. Fault tolerance (FT) mechanisms help mitigating the impact of failures on parallel applications. However, utilizing such mechanisms requires additional overhead. Besides, the overuse of FT mechanisms results in unnecessarily large overhead in the parallel applications. Knowing when and where failures will occur can greatly reduce the excessive overhead. As such, failure prediction is critical in order to effectively utilize FT mechanisms. In addition, it also helps …


Near-Optimal Scheduling And Decision-Making Models For Reactive And Proactive Fault Tolerance Mechanisms, Nichamon Naksinehaboon Apr 2012

Near-Optimal Scheduling And Decision-Making Models For Reactive And Proactive Fault Tolerance Mechanisms, Nichamon Naksinehaboon

Doctoral Dissertations

As High Performance Computing (HPC) systems increase in size to fulfill computational power demand, the chance of failure occurrences dramatically increases, resulting in potentially large amounts of lost computing time. Fault Tolerance (FT) mechanisms aim to mitigate the impact of failure occurrences to the running applications. However, the overhead of FT mechanisms increases proportionally to the HPC systems' size. Therefore, challenges arise in handling the expensive overhead of FT mechanisms while minimizing the large amount of lost computing time due to failure occurrences.

In this dissertation, a near-optimal scheduling model is built to determine when to invoke a hybrid checkpoint …