Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Computer Sciences

Dartmouth College

Series

2009

Privacy

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

A Privacy Framework For Mobile Health And Home-Care Systems, David Kotz, Sasikanth Avancha, Amit Baxi Nov 2009

A Privacy Framework For Mobile Health And Home-Care Systems, David Kotz, Sasikanth Avancha, Amit Baxi

Dartmouth Scholarship

In this paper, we consider the challenge of preserving patient privacy in the context of mobile healthcare and home-care systems, that is, the use of mobile computing and communications technologies in the delivery of healthcare or the provision of at-home medical care and assisted living. This paper makes three primary contributions. First, we compare existing privacy frameworks, identifying key differences and shortcomings. Second, we identify a privacy framework for mobile healthcare and home-care systems. Third, we extract a set of privacy properties intended for use by those who design systems and applications for mobile healthcare and home-care systems, linking them …


Opportunistic Sensing: Security Challenges For The New Paradigm, Apu Kapadia, David Kotz, Nikos Triandopoulos Jan 2009

Opportunistic Sensing: Security Challenges For The New Paradigm, Apu Kapadia, David Kotz, Nikos Triandopoulos

Dartmouth Scholarship

We study the security challenges that arise in Opportunistic people-centric sensing, a new sensing paradigm leveraging humans as part of the sensing infrastructure. Most prior sensor-network research has focused on collecting and processing environmental data using a static topology and an application-aware infrastructure, whereas opportunistic sensing involves collecting, storing, processing and fusing large volumes of data related to everyday human activities. This highly dynamic and mobile setting, where humans are the central focus, presents new challenges for information security, because data originates from sensors carried by people— not tiny sensors thrown in the forest or attached to animals. In this …