Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Computer Sciences

PDF

Series

2021

Machine learning

Institution
Publication

Articles 1 - 30 of 44

Full-Text Articles in Physical Sciences and Mathematics

A Hybrid Machine Learning Framework For Predicting Students’ Performance In Virtual Learning Environment, Edmund Evangelista Dec 2021

A Hybrid Machine Learning Framework For Predicting Students’ Performance In Virtual Learning Environment, Edmund Evangelista

All Works

Virtual Learning Environments (VLE), such as Moodle and Blackboard, store vast data to help identify students' performance and engagement. As a result, researchers have been focusing their efforts on assisting educational institutions in providing machine learning models to predict at-risk students and improve their performance. However, it requires an efficient approach to construct a model that can ultimately provide accurate predictions. Consequently, this study proposes a hybrid machine learning framework to predict students' performance using eight classification algorithms and three ensemble methods (Bagging, Boosting, Voting) to determine the best-performing predictive model. In addition, this study used filter-based and wrapper-based feature …


Machine Learning And Radiomic Features To Predict Overall Survival Time For Glioblastoma Patients, Lina Chato, Shahram Latifi Dec 2021

Machine Learning And Radiomic Features To Predict Overall Survival Time For Glioblastoma Patients, Lina Chato, Shahram Latifi

Electrical & Computer Engineering Faculty Research

Glioblastoma is an aggressive brain tumor with a low survival rate. Understanding tumor behavior by predicting prognosis outcomes is a crucial factor in deciding a proper treatment plan. In this paper, an automatic overall survival time prediction system (OST) for glioblastoma patients is developed on the basis of radiomic features and machine learning (ML). This system is designed to predict prognosis outcomes by classifying a glioblastoma patient into one of three survival groups: short-term, mid-term, and long-term. To develop the prediction system, a medical dataset based on imaging information from magnetic resonance imaging (MRI) and non-imaging information is used. A …


Machine Learning For Stock Prediction Based On Fundamental Analysis, Yuxuan Huang, Luiz Fernando Capretz, Danny Ho Dec 2021

Machine Learning For Stock Prediction Based On Fundamental Analysis, Yuxuan Huang, Luiz Fernando Capretz, Danny Ho

Electrical and Computer Engineering Publications

Application of machine learning for stock prediction is attracting a lot of attention in recent years. A large amount of research has been conducted in this area and multiple existing results have shown that machine learning methods could be successfully used toward stock predicting using stocks’ historical data. Most of these existing approaches have focused on short term prediction using stocks’ historical price and technical indicators. In this paper, we prepared 22 years’ worth of stock quarterly financial data and investigated three machine learning algorithms: Feed-forward Neural Network (FNN), Random Forest (RF) and Adaptive Neural Fuzzy Inference System (ANFIS) for …


Estimation And Interpretation Of Machine Learning Models With Customized Surrogate Model, Mudabbir Ali, Asad Masood Khattak, Zain Ali, Bashir Hayat, Muhammad Idrees, Zeeshan Pervez, Kashif Rizwan, Tae Eung Sung, Ki Il Kim Dec 2021

Estimation And Interpretation Of Machine Learning Models With Customized Surrogate Model, Mudabbir Ali, Asad Masood Khattak, Zain Ali, Bashir Hayat, Muhammad Idrees, Zeeshan Pervez, Kashif Rizwan, Tae Eung Sung, Ki Il Kim

All Works

Machine learning has the potential to predict unseen data and thus improve the productivity and processes of daily life activities. Notwithstanding its adaptiveness, several sensitive applications based on such technology cannot compromise our trust in them; thus, highly accurate machine learning models require reason. Such models are black boxes for end-users. Therefore, the concept of interpretability plays the role if assisting users in a couple of ways. Interpretable models are models that possess the quality of explaining predictions. Different strategies have been proposed for the aforementioned concept but some of these require an excessive amount of effort, lack generalization, are …


Regulating New Tech: Problems, Pathways, And People, Cary Coglianese Dec 2021

Regulating New Tech: Problems, Pathways, And People, Cary Coglianese

All Faculty Scholarship

New technologies bring with them many promises, but also a series of new problems. Even though these problems are new, they are not unlike the types of problems that regulators have long addressed in other contexts. The lessons from regulation in the past can thus guide regulatory efforts today. Regulators must focus on understanding the problems they seek to address and the causal pathways that lead to these problems. Then they must undertake efforts to shape the behavior of those in industry so that private sector managers focus on their technologies’ problems and take actions to interrupt the causal pathways. …


Experimental Analysis Of Gbm To Expand The Time Horizon Of Irish Electricity Price Forecasts, Conor Lynch, Christian O'Leary, Preetham Goving Kolar Sundareshan, Yavuz Akin Nov 2021

Experimental Analysis Of Gbm To Expand The Time Horizon Of Irish Electricity Price Forecasts, Conor Lynch, Christian O'Leary, Preetham Goving Kolar Sundareshan, Yavuz Akin

NIMBUS Articles

In response to the inherent challenges of generating cost-effective electricity consumption schedules for dynamic systems, this paper espouses the use of GBM or Gradient Boosting Machine-based models for electricity price forecasting. These models are applied to data streams from the Irish electricity market and achieve favorable results, relative to the current state-of-the-art. Presently, electricity prices are published 10 h in advance of the trade day of interest. Using the forecasting methodology outlined in this paper, an estimation of these prices can be made available one day in advance of the official price publication, thus extending the time available to plan …


Deep Learning For Multiclass Classification, Predictive Modeling And Segmentation Of Disease Prone Regions In Alzheimer’S Disease, Maryamossadat Aghili Nov 2021

Deep Learning For Multiclass Classification, Predictive Modeling And Segmentation Of Disease Prone Regions In Alzheimer’S Disease, Maryamossadat Aghili

FIU Electronic Theses and Dissertations

One of the challenges facing accurate diagnosis and prognosis of Alzheimer’s Disease (AD) is identifying the subtle changes that define the early onset of the disease. This dissertation investigates three of the main challenges confronted when such subtle changes are to be identified in the most meaningful way. These are (1) the missing data challenge, (2) longitudinal modeling of disease progression, and (3) the segmentation and volumetric calculation of disease-prone brain areas in medical images. The scarcity of sufficient data compounded by the missing data challenge in many longitudinal samples exacerbates the problem as we seek statistical meaningfulness in multiclass …


Binary Classifiers For Noisy Datasets: A Comparative Study Of Existing Quantum Machine Learning Frameworks And Some New Approaches, Nikolaos Schetakis, Davit Aghamalyan, Paul Robert Griffin, Michael Boguslavsky Nov 2021

Binary Classifiers For Noisy Datasets: A Comparative Study Of Existing Quantum Machine Learning Frameworks And Some New Approaches, Nikolaos Schetakis, Davit Aghamalyan, Paul Robert Griffin, Michael Boguslavsky

Research Collection School Of Computing and Information Systems

This technology offer is a quantum machine learning algorithm applied to binary classification models for noisy datasets which are prevalent in financial and other datasets. By combining hybrid-neural networks, quantum parametric circuits, and data re-uploading we have improved the classification of non-convex 2-dimensional figures by understanding learning stability as noise increases in the dataset. The metric we use for assessing the performance of our quantum classifiers is the area under the receiver operator curve (ROC AUC). We are interested to collaborate with partners with use cases for binary classification of noisy data. Also, as quantum technology is still insufficient for …


Building Legal Datasets, Jerrold Soh Nov 2021

Building Legal Datasets, Jerrold Soh

Research Collection Yong Pung How School Of Law

Data-centric AI calls for better, not just bigger, datasets. As data protection laws with extra-territorial reach proliferate worldwide, ensuring datasets are legal is an increasingly crucial yet overlooked component of “better”. To help dataset builders become more willing and able to navigate this complex legal space, this paper reviews key legal obligations surrounding ML datasets, examines the practical impact of data laws on ML pipelines, and offers a framework for building legal datasets.


Towards Accurate Run-Time Hardware-Assisted Stealthy Malware Detection: A Lightweight, Yet Effective Time Series Cnn-Based Approach, Hossein Sayadi, Yifeng Gao, Hosein Mohammadi Makrani, Jessica Lin, Paulo Cesar Costa, Setareh Rafatirad, Houman Homayoun Oct 2021

Towards Accurate Run-Time Hardware-Assisted Stealthy Malware Detection: A Lightweight, Yet Effective Time Series Cnn-Based Approach, Hossein Sayadi, Yifeng Gao, Hosein Mohammadi Makrani, Jessica Lin, Paulo Cesar Costa, Setareh Rafatirad, Houman Homayoun

Computer Science Faculty Publications and Presentations

According to recent security analysis reports, malicious software (a.k.a. malware) is rising at an alarming rate in numbers, complexity, and harmful purposes to compromise the security of modern computer systems. Recently, malware detection based on low-level hardware features (e.g., Hardware Performance Counters (HPCs) information) has emerged as an effective alternative solution to address the complexity and performance overheads of traditional software-based detection methods. Hardware-assisted Malware Detection (HMD) techniques depend on standard Machine Learning (ML) classifiers to detect signatures of malicious applications by monitoring built-in HPC registers during execution at run-time. Prior HMD methods though effective have limited their study on …


Statistical Potentials For Rna-Protein Interactions Optimized By Cma-Es, Takayuki Kimura, Nobuaki Yasuo, Masakazu Sekijima, Brooke Lustig Oct 2021

Statistical Potentials For Rna-Protein Interactions Optimized By Cma-Es, Takayuki Kimura, Nobuaki Yasuo, Masakazu Sekijima, Brooke Lustig

Faculty Research, Scholarly, and Creative Activity

Characterizing RNA-protein interactions remains an important endeavor, complicated by the difficulty in obtaining the relevant structures. Evaluating model structures via statistical potentials is in principle straight-forward and effective. However, given the relatively small size of the existing learning set of RNA-protein complexes optimization of such potentials continues to be problematic. Notably, interaction-based statistical potentials have problems in addressing large RNA-protein complexes. In this study, we adopted a novel strategy with covariance matrix adaptation (CMA-ES) to calculate statistical potentials, successfully identifying native docking poses.


Measuring Data Collection Diligence For Community Healthcare, Galawala Ramesha Samurdhi Karunasena, M. S. Ambiya, Arunesh Sinha, R. Nagar, S. Dalal, Abdullah. H., D. Thakkar, D. Narayanan, M. Tambe Oct 2021

Measuring Data Collection Diligence For Community Healthcare, Galawala Ramesha Samurdhi Karunasena, M. S. Ambiya, Arunesh Sinha, R. Nagar, S. Dalal, Abdullah. H., D. Thakkar, D. Narayanan, M. Tambe

Research Collection School Of Computing and Information Systems

Data analytics has tremendous potential to provide targeted benefit in low-resource communities, however the availability of highquality public health data is a significant challenge in developing countries primarily due to non-diligent data collection by community health workers (CHWs). Our use of the word non-diligence here is to emphasize that poor data collection is often not a deliberate action by CHW but arises due to a myriad of factors, sometime beyond the control of the CHW. In this work, we define and test a data collection diligence score. This challenging unlabeled data problem is handled by building upon domain expert’s guidance …


Artificial Intelligence In Cyber Security, University Of Maine Artificial Intelligence Initiative Sep 2021

Artificial Intelligence In Cyber Security, University Of Maine Artificial Intelligence Initiative

General University of Maine Publications

UMaine AI draws top talent and leverages a distinctive set of capabilities from the University of Maine and other collaborating institutions from across Maine and beyond, while it also recruits world-class talent from across the nation and the world. It is centered at the University of Maine, leveraging the university’s strengths across disciplines, including computing and information sciences, engineering, health and life sciences, business, education, social sciences, and more.


Cognition-Enhanced Machine Learning For Better Predictions With Limited Data, Florian Sense, Ryan Wood, Michael G. Collins, Joshua Fiechter, Aihua W. Wood, Michael Krusmark, Tiffany Jastrzembski, Christopher W. Myers Sep 2021

Cognition-Enhanced Machine Learning For Better Predictions With Limited Data, Florian Sense, Ryan Wood, Michael G. Collins, Joshua Fiechter, Aihua W. Wood, Michael Krusmark, Tiffany Jastrzembski, Christopher W. Myers

Faculty Publications

The fields of machine learning (ML) and cognitive science have developed complementary approaches to computationally modeling human behavior. ML's primary concern is maximizing prediction accuracy; cognitive science's primary concern is explaining the underlying mechanisms. Cross-talk between these disciplines is limited, likely because the tasks and goals usually differ. The domain of e-learning and knowledge acquisition constitutes a fruitful intersection for the two fields’ methodologies to be integrated because accurately tracking learning and forgetting over time and predicting future performance based on learning histories are central to developing effective, personalized learning tools. Here, we show how a state-of-the-art ML model can …


Orthogonal Inductive Matrix Completion, Antoine Ledent, Rrodrigo Alves, Marius Kloft Sep 2021

Orthogonal Inductive Matrix Completion, Antoine Ledent, Rrodrigo Alves, Marius Kloft

Research Collection School Of Computing and Information Systems

We propose orthogonal inductive matrix completion (OMIC), an interpretable approach to matrix completion based on a sum of multiple orthonormal side information terms, together with nuclear-norm regularization. The approach allows us to inject prior knowledge about the singular vectors of the ground-truth matrix. We optimize the approach by a provably converging algorithm, which optimizes all components of the model simultaneously. We study the generalization capabilities of our method in both the distribution-free setting and in the case where the sampling distribution admits uniform marginals, yielding learning guarantees that improve with the quality of the injected knowledge in both cases. As …


Estimating Homophily In Social Networks Using Dyadic Predictions, George Berry, Antonio Sirianni, Ingmar Weber, Jisun An, Michael Macy Aug 2021

Estimating Homophily In Social Networks Using Dyadic Predictions, George Berry, Antonio Sirianni, Ingmar Weber, Jisun An, Michael Macy

Research Collection School Of Computing and Information Systems

Predictions of node categories are commonly used to estimate homophily and other relational properties in networks. However, little is known about the validity of using predictions for this task. We show that estimating homophily in a network is a problem of predicting categories of dyads (edges) in the graph. Homophily estimates are unbiased when predictions of dyad categories are unbiased. Node-level prediction models, such as the use of names to classify ethnicity or gender, do not generally produce unbiased predictions of dyad categories and therefore produce biased homophily estimates. Bias comes from three sources: sampling bias, correlation between model errors …


Application Of Artificial Intelligence And Machine Learning In Libraries: A Systematic Review, Rajesh Kumar Das, Mohammad Sharif Ul Islam Aug 2021

Application Of Artificial Intelligence And Machine Learning In Libraries: A Systematic Review, Rajesh Kumar Das, Mohammad Sharif Ul Islam

Library Philosophy and Practice (e-journal)

As the concept and implementation of cutting-edge technologies like artificial intelligence and machine learning has become relevant, academics, researchers and information professionals involve research in this area. The objective of this systematic literature review is to provide a synthesis of empirical studies exploring application of artificial intelligence and machine learning in libraries. To achieve the objectives of the study, a systematic literature review was conducted based on the original guidelines proposed by Kitchenham et al. (2009). Data was collected from Web of Science, Scopus, LISA and LISTA databases. Following the rigorous/ established selection process, a total of thirty-two articles were …


Graphical Models In Reconstructability Analysis And Bayesian Networks, Marcus Harris, Martin Zwick Jul 2021

Graphical Models In Reconstructability Analysis And Bayesian Networks, Marcus Harris, Martin Zwick

Systems Science Faculty Publications and Presentations

Reconstructability Analysis (RA) and Bayesian Networks (BN) are both probabilistic graphical modeling methodologies used in machine learning and artificial intelligence. There are RA models that are statistically equivalent to BN models and there are also models unique to RA and models unique to BN. The primary goal of this paper is to unify these two methodologies via a lattice of structures that offers an expanded set of models to represent complex systems more accurately or more simply. The conceptualization of this lattice also offers a framework for additional innovations beyond what is presented here. Specifically, this paper integrates RA and …


Diagnostic Accuracy Of Machine Learning Models To Identify Congenital Heart Disease: A Meta-Analysis, Zahra Hoodbhoy, Uswa Jiwani, Saima Sattar, Rehana A. Salam, Babar Hasan, Jai K. Das Jul 2021

Diagnostic Accuracy Of Machine Learning Models To Identify Congenital Heart Disease: A Meta-Analysis, Zahra Hoodbhoy, Uswa Jiwani, Saima Sattar, Rehana A. Salam, Babar Hasan, Jai K. Das

Department of Paediatrics and Child Health

Background: With the dearth of trained care providers to diagnose congenital heart disease (CHD) and a surge in machine learning (ML) models, this review aims to estimate the diagnostic accuracy of such models for detecting CHD.
Methods: A comprehensive literature search in the PubMed, CINAHL, Wiley Cochrane Library, and Web of Science databases was performed. Studies that reported the diagnostic ability of ML for the detection of CHD compared to the reference standard were included. Risk of bias assessment was performed using Quality Assessment for Diagnostic Accuracy Studies-2 tool. The sensitivity and specificity results from the studies were used to …


Algebraic Graph-Assisted Bidirectional Transformers For Molecular Property Prediction, Dong Chen, Kaifu Gao, Duc Duy Nguyen, Xin Chen, Yi Jiang, Guo-Wei Wei, Feng Pan Jun 2021

Algebraic Graph-Assisted Bidirectional Transformers For Molecular Property Prediction, Dong Chen, Kaifu Gao, Duc Duy Nguyen, Xin Chen, Yi Jiang, Guo-Wei Wei, Feng Pan

Mathematics Faculty Publications

The ability of molecular property prediction is of great significance to drug discovery, human health, and environmental protection. Despite considerable efforts, quantitative prediction of various molecular properties remains a challenge. Although some machine learning models, such as bidirectional encoder from transformer, can incorporate massive unlabeled molecular data into molecular representations via a self-supervised learning strategy, it neglects three-dimensional (3D) stereochemical information. Algebraic graph, specifically, element-specific multiscale weighted colored algebraic graph, embeds complementary 3D molecular information into graph invariants. We propose an algebraic graph-assisted bidirectional transformer (AGBT) framework by fusing representations generated by algebraic graph and bidirectional transformer, as well as …


Monitoring Quality Of Life Indicators At Home From Sparse And Low-Cost Sensor Data., Dympna O'Sullivan, Rilwan Basaru, Simone Stumpf, Neil Maiden Jun 2021

Monitoring Quality Of Life Indicators At Home From Sparse And Low-Cost Sensor Data., Dympna O'Sullivan, Rilwan Basaru, Simone Stumpf, Neil Maiden

Conference papers

Supporting older people, many of whom live with chronic conditions or cognitive and physical impairments, to live independently at home is of increasing importance due to ageing demographics. To aid independent living at home, much effort is being directed at reliably detecting activities from sensor data to monitor people’s quality of life or to enhance self-management of their own health. Current efforts typically leverage smart homes which have large numbers of sensors installed to overcome challenges in the accurate detection of activities. In this work, we report on the results of machine learning models based on data collected with a …


Per-Pixel Cloud Cover Classification Of Multispectral Landsat-8 Data, Salome E. Carrasco [*], Torrey J. Wagner, Brent T. Langhals Jun 2021

Per-Pixel Cloud Cover Classification Of Multispectral Landsat-8 Data, Salome E. Carrasco [*], Torrey J. Wagner, Brent T. Langhals

Faculty Publications

Random forest and neural network algorithms are applied to identify cloud cover using 10 of the wavelength bands available in Landsat 8 imagery. The methods classify each pixel into 4 different classes: clear, cloud shadow, light cloud, or cloud. The first method is based on a fully connected neural network with ten input neurons, two hidden layers of 8 and 10 neurons respectively, and a single-neuron output for each class. This type of model is considered with and without L2 regularization applied to the kernel weighting. The final model type is a random forest classifier created from an ensemble of …


Synthetic Aperture Radar Image Recognition Of Armored Vehicles, Christopher Szul [*], Torrey J. Wagner, Brent T. Langhals Jun 2021

Synthetic Aperture Radar Image Recognition Of Armored Vehicles, Christopher Szul [*], Torrey J. Wagner, Brent T. Langhals

Faculty Publications

Synthetic Aperture Radar (SAR) imagery is not affected by weather and allows for day-and-night observations, however it can be difficult to interpret. This work applies classical and neural network machine learning techniques to perform image classification of SAR imagery. The Moving and Stationary Target Acquisition and Recognition dataset from the Air Force Research Laboratory was used, which contained 2,987 total observations of the BMP-2, BTR-70, and T-72 vehicles. Using a 75%/25% train/test split, the classical model achieved an average multi-class image recognition accuracy of 70%, while a convolutional neural network was able to achieve a 97% accuracy with lower model …


Towards A Machine Learning Based Generalizable Framework For Detecting Covid-19 Misinformation On Social Media, Yuanzhi Chen May 2021

Towards A Machine Learning Based Generalizable Framework For Detecting Covid-19 Misinformation On Social Media, Yuanzhi Chen

Department of Computer Science and Engineering: Dissertations, Theses, and Student Research

Since the beginning of the COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, online social media has become a conduit for the rapid propagation of misinformation. The misinformation is a type of fake news that is created inadvertently without the intention of causing harm. Yet COVID-19 misinformation has caused serious social disruptions including accidental death and destruction of public property. Timely prevention of the propagation of online misinformation requires the development of automated detection tools. Machine learning (ML) based models have been used to automate techniques for identifying fake news. These techniques involve converting text data …


Finding The Needle In A Haystack: On The Automatic Identification Of Accessibility User Reviews, Eman Abdullah Alomar, Wajdi Aljedaani, Murtaza Tamjeed, Mohamed Wiem Mkaouer, Yasime Elglaly May 2021

Finding The Needle In A Haystack: On The Automatic Identification Of Accessibility User Reviews, Eman Abdullah Alomar, Wajdi Aljedaani, Murtaza Tamjeed, Mohamed Wiem Mkaouer, Yasime Elglaly

Articles

In recent years, mobile accessibility has become an important trend with the goal of allowing all users the possibility of using any app without many limitations. User reviews include insights that are useful for app evolution. However, with the increase in the amount of received reviews, manually analyzing them is tedious and time-consuming, especially when searching for accessibility reviews. The goal of this paper is to support the automated identification of accessibility in user reviews, to help technology professionals in prioritizing their handling, and thus, creating more inclusive apps. Particularly, we design a model that takes as input accessibility user …


Defect Detection In Atomic Resolution Transmission Electron Microscopy Images Using Machine Learning, Philip Cho, Aihua W. Wood, Krishnamurthy Mahalingam, Kurt Eyink May 2021

Defect Detection In Atomic Resolution Transmission Electron Microscopy Images Using Machine Learning, Philip Cho, Aihua W. Wood, Krishnamurthy Mahalingam, Kurt Eyink

Faculty Publications

Point defects play a fundamental role in the discovery of new materials due to their strong influence on material properties and behavior. At present, imaging techniques based on transmission electron microscopy (TEM) are widely employed for characterizing point defects in materials. However, current methods for defect detection predominantly involve visual inspection of TEM images, which is laborious and poses difficulties in materials where defect related contrast is weak or ambiguous. Recent efforts to develop machine learning methods for the detection of point defects in TEM images have focused on supervised methods that require labeled training data that is generated via …


Mlatticeabc: Generic Lattice Constant Prediction Of Crystal Materials Using Machine Learning, Yuxin Li, Wenhui Yang, Rongzhi Dong, Jianjun Hu Apr 2021

Mlatticeabc: Generic Lattice Constant Prediction Of Crystal Materials Using Machine Learning, Yuxin Li, Wenhui Yang, Rongzhi Dong, Jianjun Hu

Faculty Publications

Lattice constants such as unit cell edge lengths and plane angles are important parameters of the periodic structures of crystal materials. Predicting crystal lattice constants has wide applications in crystal structure prediction and materials property prediction. Previous work has used machine learning models such as neural networks and support vector machines combined with composition features for lattice constant prediction and has achieved a maximum performance for cubic structures with an average coefficient of determination (R2) of 0.82. Other models tailored for special materials family of a fixed form such as ABX3 perovskites can achieve much higher performance due …


Artificial Intelligence For Agriculture, University Of Maine Artificial Intelligence Initiative Apr 2021

Artificial Intelligence For Agriculture, University Of Maine Artificial Intelligence Initiative

General University of Maine Publications

UMaine AI draws top talent and leverages a distinctive set of capabilities from the University of Maine and other collaborating institutions from across Maine and beyond, while it also recruits world-class talent from across the nation and the world. It is centered at the University of Maine, leveraging the university’s strengths across disciplines, including computing and information sciences, engineering, health and life sciences, business, education, social sciences, and more.


Development Of A Real-Time Single-Lead Single-Beat Frequency-Independent Myocardial Infarction Detector, Harold Martin Mar 2021

Development Of A Real-Time Single-Lead Single-Beat Frequency-Independent Myocardial Infarction Detector, Harold Martin

FIU Electronic Theses and Dissertations

The central aim of this research is the development and deployment of a novel multilayer machine learning design with unique application for the diagnosis of myocardial infarctions (MIs) from individual heartbeats of single-lead electrocardiograms (EKGs) irrespective of their sampling frequencies over a given range. To the best of our knowledge, this design is the first to attempt inter-patient myocardial infarction detection from individual heartbeats of single-lead (lead II) electrocardiograms that achieves high accuracy and near real-time diagnosis. The processing time of 300 milliseconds to a diagnosis is just at the time range in between extremely fast heartbeats of around 300 …


Scite: The Next Generation Of Citations, Sean Rife, Domenic Rosati, Joshua M. Nicholson Mar 2021

Scite: The Next Generation Of Citations, Sean Rife, Domenic Rosati, Joshua M. Nicholson

Faculty & Staff Research and Creative Activity

Key points

  • While the importance of citation context has long been recognized, simple citation counts remain as a crude measure of importance.
  • Providing citation context should support the publication of careful science instead of headline‐grabbing and salami‐sliced non‐replicable studies.
  • Machine learning has enabled the extraction of citation context for the first time, and made the classification of citation types at scale possible.