Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

An Improved Analytical Model For Wormhole Routed Networks With Application To Butterfly Fat-Trees, Ronald I. Greenberg, Lee Guan Jan 2018

An Improved Analytical Model For Wormhole Routed Networks With Application To Butterfly Fat-Trees, Ronald I. Greenberg, Lee Guan

Ronald Greenberg

A performance model for wormhole routed interconnection networks is presented and applied to the butterfly fat-tree network. Experimental results agree very closely over a wide range of load rate. Novel aspects of the model, leading to accurate and simple performance predictions, include (1) use of multiple-server queues, and (2) a general method of correcting queuing results based on Poisson arrivals to apply to wormhole routing. These ideas can also be applied to other networks.


Modeling And Comparison Of Wormhole Routed Mesh And Torus Networks, Ronald I. Greenberg, Lee Guan Oct 1997

Modeling And Comparison Of Wormhole Routed Mesh And Torus Networks, Ronald I. Greenberg, Lee Guan

Computer Science: Faculty Publications and Other Works

2D-mesh and torus networks have often been proposed as the interconnection pattern for parallel computers. In addition, wormhole routing has increasingly been advocated as a method of reducing latency. Most analysis of wormhole routed networks, however, has focused on the torus and the broader class of k-ary n-cubes to which it belongs. This paper presents a performance model for the wormhole routed mesh, and it compares the performance of the mesh and torus based on theoretical and empirical analyses.


An Improved Analytical Model For Wormhole Routed Networks With Application To Butterfly Fat-Trees, Ronald I. Greenberg, Lee Guan Aug 1997

An Improved Analytical Model For Wormhole Routed Networks With Application To Butterfly Fat-Trees, Ronald I. Greenberg, Lee Guan

Computer Science: Faculty Publications and Other Works

A performance model for wormhole routed interconnection networks is presented and applied to the butterfly fat-tree network. Experimental results agree very closely over a wide range of load rate. Novel aspects of the model, leading to accurate and simple performance predictions, include (1) use of multiple-server queues, and (2) a general method of correcting queuing results based on Poisson arrivals to apply to wormhole routing. These ideas can also be applied to other networks.


A Comparison Of Queueing, Cluster And Distributed Computing Systems, Joseph A. Kaplan, Michael L. Nelson Jan 1993

A Comparison Of Queueing, Cluster And Distributed Computing Systems, Joseph A. Kaplan, Michael L. Nelson

Computer Science Faculty Publications

Using workstation clusters for distributed computing has become popular with the proliferation of inexpensive, powerful workstations. Workstation clusters offer both a cost effective alternative to batch processing and an easy entry into parallel computing. However, a number of workstations on a network does not constitute a cluster. Cluster management software is necessary to harness the collective computing power. A variety of cluster management and queuing systems are compared: Distributed Queueing Systems (DQS), Condor, Load Leveler, Load Balancer, Load Sharing Facility (LSF - formerly Utopia), Distributed Job Manager (DJM), Computing in Distributed Networked Environments (CODINE), and NQS/Exec. The systems differ in …