Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physical Sciences and Mathematics

Wildfire Spread Prediction Using Attention Mechanisms In U-Net, Kamen Haresh Shah, Kamen Haresh Shah Dec 2022

Wildfire Spread Prediction Using Attention Mechanisms In U-Net, Kamen Haresh Shah, Kamen Haresh Shah

Master's Theses

An investigation into using attention mechanisms for better feature extraction in wildfire spread prediction models. This research examines the U-net architecture to achieve image segmentation, a process that partitions images by classifying pixels into one of two classes. The deep learning models explored in this research integrate modern deep learning architectures, and techniques used to optimize them. The models are trained on 12 distinct observational variables derived from the Google Earth Engine catalog. Evaluation is conducted with accuracy, Dice coefficient score, ROC-AUC, and F1-score. This research concludes that when augmenting U-net with attention mechanisms, the attention component improves feature suppression …


Rotordynamic Analysis Of Theoretical Models And Experimental Systems, Cameron R. Naugle Apr 2018

Rotordynamic Analysis Of Theoretical Models And Experimental Systems, Cameron R. Naugle

Master's Theses

This thesis is intended to provide fundamental information for the construction and

analysis of rotordynamic theoretical models, and their comparison the experimental

systems. Finite Element Method (FEM) is used to construct models using Timoshenko

beam elements with viscous and hysteretic internal damping. Eigenvalues

and eigenvectors of state space equations are used to perform stability analysis, produce

critical speed maps, and visualize mode shapes. Frequency domain analysis

of theoretical models is used to provide Bode diagrams and in experimental data

full spectrum cascade plots. Experimental and theoretical model analyses are used

to optimize the control algorithm for an Active Magnetic Bearing …


A High Quality, Eulerian 3d Fluid Solver In C++, Lejon Anthony Mcgowan Nov 2017

A High Quality, Eulerian 3d Fluid Solver In C++, Lejon Anthony Mcgowan

Computer Science and Software Engineering

Fluids are a part of everyday life, yet are one of the hardest elements to properly render in computer graphics. Water is the most obvious entity when thinking of what a fluid simulation can achieve (and it is indeed the focus of this project), but many other aspects of nature, like fog, clouds, and particle effects. Real-time graphics like video games employ many heuristics to approximate these effects, but large-scale renderers aim to simulate these effects as closely as possible.

In this project, I wish to achieve effects of the latter nature. Using the Eulerian technique of discrete grids, I …


Visualizing Relationships Between Related Variables: Improving Physics Education Through D3.Js Network Visualizations, Stephanie Friend Mar 2015

Visualizing Relationships Between Related Variables: Improving Physics Education Through D3.Js Network Visualizations, Stephanie Friend

Liberal Arts and Engineering Studies

phiMap is a web application started by Cal Poly professors and students to aid professors in teaching physics. I developed Javascript visualizations for phiMap that serve to simplify the processes of both teaching and learning physics. These visualizations aim to present relationships between physics variables in an easy to understand manner, and they could eventually have a huge impact on physics education.


Pretty Lights, Nicholas (Nick) Delmas, Matthew (Matt) Maniaci Apr 2010

Pretty Lights, Nicholas (Nick) Delmas, Matthew (Matt) Maniaci

Computer Engineering

Digital media players often include a visualization component that allows a user to watch a visualization synchronized to their music or videos. This project uses the visualization plugin API of an existing media playback program (WinAmp) but it displays its visuals using physical LED lights. Instead of outputting visuals to the computer screen, data is sent over USB to a micro controller that runs the LED lights. This project aims to give users a more visceral visual experience than traditional visualizations on the computer screen.


High Order Finite Elements For Lagrangian Computational Fluid Dynamics, Truman Everett Ellis Apr 2010

High Order Finite Elements For Lagrangian Computational Fluid Dynamics, Truman Everett Ellis

Master's Theses

A general finite element method is presented to solve the Euler equations in a Lagrangian reference frame. This FEM framework allows for separate arbitrarily high order representation of kinematic and thermodynamic variables. An accompanying hydrodynamics code written in Matlab is presented as a test-bed to experiment with various basis function choices. A wide range of basis function pairs are postulated and a few choices are developed further, including the bi-quadratic Q2-Q1d and Q2-Q2d elements. These are compared with a corresponding pair of low order bi-linear elements, traditional Q1-Q0 and sub-zonal pressure Q1-Q1d. Several test problems are considered including static convergence …