Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Climate

San Jose State University

Faculty Publications

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Teaching In The Age Of Humans Helping Students Think About Climate Change., Grinell Smith Jan 2017

Teaching In The Age Of Humans Helping Students Think About Climate Change., Grinell Smith

Faculty Publications

To convey the magnitude and rapidity of current climate change and the severity of predictions for the next century, I present essential climate science information using four key sets of data and contextualize that information with personal anecdotes. I then consider the reasons for the large gap between the scientific consensus about anthropogenic climate change and public perceptions of that consensus. With several known challenges to climate change education in mind, I offer four recommendations for teachers that map relevant social psychology to pedagogy: (1) establish a learning community that works to disrupt in-group favoritism and reduce attribution bias; (2) …


Dust Deposition In The Eastern Indian Ocean: The Ocean Perspective From Antarctica To The Bay Of Bengal, Maxime Grand, Christopher Measures, Mariko Hatta, William Hiscock, Clifton Buck, William Landing Mar 2015

Dust Deposition In The Eastern Indian Ocean: The Ocean Perspective From Antarctica To The Bay Of Bengal, Maxime Grand, Christopher Measures, Mariko Hatta, William Hiscock, Clifton Buck, William Landing

Faculty Publications

Atmospheric deposition is an important but still poorly constrained source of trace micronutrients to the open ocean because of the dearth of in situ measurements of total deposition (i.e., wet + dry deposition) in remote regions. In this work, we discuss the upper ocean distribution of dissolved Fe and Al in the eastern Indian Ocean along a 95°E meridional transect spanning the Antarctic margin to the Bay of Bengal. We use the mixed layer concentration of dissolved Al in conjunction with empirical data in a simple steady state model to produce 75 estimates of total dust deposition that we compare …


Dissolved Fe And Al In The Upper 1000 M Of The Eastern Indian Ocean: A High‐Resolution Transect Along 95°E From The Antarctic Margin To The Bay Of Bengal, Maxime Grand, Christopher Measures, Mariko Hatta, William Hiscock, William Landing, Peter Morton, Clifton Buck, Pamela Barrett, Joseph Resing Mar 2015

Dissolved Fe And Al In The Upper 1000 M Of The Eastern Indian Ocean: A High‐Resolution Transect Along 95°E From The Antarctic Margin To The Bay Of Bengal, Maxime Grand, Christopher Measures, Mariko Hatta, William Hiscock, William Landing, Peter Morton, Clifton Buck, Pamela Barrett, Joseph Resing

Faculty Publications

A high‐resolution section of dissolved iron (dFe) and aluminum (dAl) was obtained along ~95°E in the upper 1000 m of the eastern Indian Ocean from the Antarctic margin (66°S) to the Bay of Bengal (18°N) during the U.S. Climate Variability and Predictability (CLIVAR) CO2 Repeat Hydrography I08S and I09N sections (February–April 2007). In the Southern Ocean, low concentrations of dAl (<1 n M) reflect the negligible dust inputs impacting the water masses subducted in the circumpolar domain. The low dAl concentrations characterizing the Southern Ocean terminate near 45°S, probably because of the advection of subtropical water masses that received dust and sedimentary inputs in their formation region. Our subsurface dFe data near the southern Kerguelen Plateau were significantly higher than historical observations in other Indian sectors of the Southern Ocean. We surmise that the offshore advection of dFe‐rich waters along the western flank of the southern Kerguelen plateau and enhanced vertical mixing could contribute to this elevated subsurface dFe inventory. Elevated subsurface particulate and dFe levels downstream of the northern Kerguelen Plateau may reflect long‐range lateral transport from the plateau's sediments and/or remineralization inputs. At the northern edge of the south Indian subtropical gyre, the deposition of Australian dust, possibly combined with the advection of dAl‐enriched waters from the Indonesian Throughflow, creates a region of elevated dAl in the upper 400 m but without a corresponding enrichment in dFe. In the northern Indian Ocean, the South Equatorial Current constitutes a remarkable biogeochemical front separating the oxygen‐rich and dFe‐poor subtropical gyre waters from the dFe‐rich and oxygen‐depleted waters of the northern Indian Ocean. By tracing the accumulation of macronutrients and dFe along the advective pathway of Indian Central Water, we show that the central waters of the northern Indian Ocean receive excess dFe in addition to that produced by remineralization inputs. The resuspension of shelf sediments and release of pore waters probably contribute to the elevated dFe and dAl levels observed below the highly stratified upper layers of the Bay of Bengal.


Quantifying The Impact Of Atmospheric Deposition On The Biogeochemistry Of Fe And Al In The Upper Ocean: A Decade Of Collaboration With The Us Clivar-Co2 Repeat Hydrography Program, Maxime Grand, Clifton Buck, William Landing, Christopher Measures, Mariko Hatta, William Hiscock, Matthew Brown, Joseph Resing Mar 2014

Quantifying The Impact Of Atmospheric Deposition On The Biogeochemistry Of Fe And Al In The Upper Ocean: A Decade Of Collaboration With The Us Clivar-Co2 Repeat Hydrography Program, Maxime Grand, Clifton Buck, William Landing, Christopher Measures, Mariko Hatta, William Hiscock, Matthew Brown, Joseph Resing

Faculty Publications

The aerosol deposition of continental material and its partial dissolution in the surface ocean exerts an important control on the distribution of iron and other potentially limiting trace metal (TM) micronutrients in the open ocean. This dust deposition has implications for the regulation of global climate through the coupling of biolimiting TM cycles, marine productivity, and the global carbon cycle. Thus, it is important to determine the locations of dust deposition in the open ocean and to quantify the magnitude and subsequent dissolution of the dust. At present, there are too few dust deposition estimates and solubility measurements in the …