Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Should We Expect Each Year In The Next Decade (2019–28) To Be Ranked Among The Top 10 Warmest Years Globally?, Anthony Arguez, Shannan Hurley, Anand Inamdar, Laurel Mahoney, Ahira Sanchez-Lugo, Lilian Yang Jan 2020

Should We Expect Each Year In The Next Decade (2019–28) To Be Ranked Among The Top 10 Warmest Years Globally?, Anthony Arguez, Shannan Hurley, Anand Inamdar, Laurel Mahoney, Ahira Sanchez-Lugo, Lilian Yang

Political Science & Geography Faculty Publications

Annual rankings of global temperature are widely cited by media and the general public, not only to place the most recent year in a historical perspective, but also as a first-order metric of recent climate change that is easily digestible by the general public. Moreover, all annual NOAAGlobalTemp anomalies from 1880 (the earliest reading available) through the mid-1970s are well below anomalies of the top 10 warmest years in Table 1, even when considering the uncertainty of the NOAAGlobalTemp time series values. While we expect the algorithm's performance to be largely independent of any changes made to the way that …


Nrlmsis 2.0: A Whole-Atmosphere Empirical Model Of Temperature And Neutral Species Densities, J. T. Emmert, D. P. Drob, J. M. Picone, D. E. Siskind, M. Jones Jr., M. G. Mlynczak, Peter F. Bernath, X. Chu, E. Doornbos, B. Funke, L. P. Goncharenko, M. E. Hervig, M. J. Schwartz, P. E. Sheese, F. Vargas, B. P. Williams, T. Yuan Jan 2020

Nrlmsis 2.0: A Whole-Atmosphere Empirical Model Of Temperature And Neutral Species Densities, J. T. Emmert, D. P. Drob, J. M. Picone, D. E. Siskind, M. Jones Jr., M. G. Mlynczak, Peter F. Bernath, X. Chu, E. Doornbos, B. Funke, L. P. Goncharenko, M. E. Hervig, M. J. Schwartz, P. E. Sheese, F. Vargas, B. P. Williams, T. Yuan

Chemistry & Biochemistry Faculty Publications

NRLMSIS® 2.0 is an empirical atmospheric model that extends from the ground to the exobase and describes the average observed behavior of temperature, eight species densities, and mass density via a parametric analytic formulation. The model inputs are location, day of year, time of day, solar activity, and geomagnetic activity. NRLMSIS 2.0 is a major, reformulated upgrade of the previous version, NRLMSISE-00. The model now couples thermospheric species densities to the entire column, via an effective mass profile that transitions each species from the fully mixed region below ~70 km altitude to the diffusively separated region above ~200 km. Other …