Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Physical Sciences and Mathematics

Organic Fouling Mitigation In Forward Osmosis Technology Through The Use Of Oscilatting Alternating Current Electric Fields, Logan Werner Jan 2024

Organic Fouling Mitigation In Forward Osmosis Technology Through The Use Of Oscilatting Alternating Current Electric Fields, Logan Werner

Graduate College Dissertations and Theses

Forward osmosis (FO) is the term given to osmosis in water filtration applications. FO has many advantages to conventional membrane filtration processes. The lack of external pressure needed to force solvent through the membrane is dramatically decreased in FO, resulting in a lower cost of operation compared to reverse osmosis. Lower external pressures also result in decreased fouling on the membrane surface and improved permeate flux. Fouling is one of the foremost challenges within the membrane filtration industry and is one of the biggest contributors to operating costs. While FO results in less fouling than RO, fouling remains a major …


A Holistic Approach To River Restoration Design And Conservation Planning On The Reach And Basin Scales Using Hydraulic Modeling And Multi-Objective Optimization Tools, Lindsay Courtney Worley Jan 2022

A Holistic Approach To River Restoration Design And Conservation Planning On The Reach And Basin Scales Using Hydraulic Modeling And Multi-Objective Optimization Tools, Lindsay Courtney Worley

Graduate College Dissertations and Theses

Flooding events around the world cost billions (USD) in damages each year. For decades, engineers have combated flood related damages by implementing flood mitigation controls such as channelization, levees or berms, and armoring. Recent advances in the study of river dynamics, however, have challenged the efficacy of these traditional flood mitigation techniques and pose that these structures are disconnecting channels from their floodplains, increasing flow rates, and contributing to more erosion. The effects of climate change combined with future predictions of increased storm frequency and intensity make it necessary to revise flood hazard mitigation strategies. A more nature-based alternative to …


Geomechanical, Geochemical, And Hydrological Aspects Of Co2 Injection Into Saline Reservoirs, Maziar Foroutan Jan 2021

Geomechanical, Geochemical, And Hydrological Aspects Of Co2 Injection Into Saline Reservoirs, Maziar Foroutan

Graduate College Dissertations and Theses

Carbon dioxide Capturing, and Sequestration (CCS) is a promising technique that helps mitigate the amount of CO2 emitted into the atmosphere. CCS process mainly involves capturing CO2 at the industrial plant, followed by transportation and injection into a suitable geological storage, under supercritical conditions. Saline aquifers are among the best geological storage candidates due to their availability, high storage capacity and injectivity. Despite the CCUS technology promise, several public safety concerns remain to be address, including but not limited to reservoir/wellbore stability and integrity, CO2 leakage, ground deformation (uplift) and induced seismicity.

The injected supercritical CO2 is trapped through different …


Upcycling Dairy Manure Fine Solids Captured By Dissolved Air Flotation As Part Of A Phosphorus Recovery And Reuse Strategy, Katherine Keith Porterfield Jan 2021

Upcycling Dairy Manure Fine Solids Captured By Dissolved Air Flotation As Part Of A Phosphorus Recovery And Reuse Strategy, Katherine Keith Porterfield

Graduate College Dissertations and Theses

Dissolved air flotation (DAF) has shown potential to substantially improve phosphorus (P) mass balance on dairy farms by capturing P associated with fine solids from liquid manure, enabling new management options. However, at < 25% total solids, further dewatering and other upcycling is necessary to facilitate export of recovered fine solids off farm for use in bagged or bulk products. I generated plant foods using DAF-captured dairy manure fine solids thermally dried to 45% total solids blended with other organic residuals. Dry biomass of tomato and marigold seedlings amended with 6% v/v plant food was six-times greater than the unamended control and not significantly different from a market alternative treatment. Because thermal dewatering can be prohibitively costly, I generated a second batch of plant foods using DAF-captured dairy manure fine solids conditioned with 3, 4.5 and 6% (w/w) quicklime or lime kiln dust (LKD) and dewatered using a benchtop press for comparison with thermally dried fine solids. Tomato seedling biomass was similar for thermally dried and LKD plant foods, but quicklime plant foods had no effect compared to the unamended control. Quicklime and LKD conditioned fine solids contained approximately 30 and 10 times less plant-available P than thermally dried fine solids, respectively—likely due to precipitation of Ca-P minerals. These studies indicate that DAF-captured dairy manure fine solids could be upcycled to bagged horticultural products with substantial agronomic value, however sustainable materials drying remains a key challenge to realizing this potential.


Coupled Thermal-Hydrological-Mechanical-Chemical Processes In Geothermal And Shale Energy Developments, Arash Kamali-Asl Jan 2019

Coupled Thermal-Hydrological-Mechanical-Chemical Processes In Geothermal And Shale Energy Developments, Arash Kamali-Asl

Graduate College Dissertations and Theses

Coupled Thermal-Hydrological-Mechanical-Chemical (THMC) processes that exist in the development of different geo-resources (e.g. deep geothermal and shale gas) affect the fracture response (i.e. aperture and permeability), which in turn influences the reservoir production. The main goal of this study was to experimentally evaluate the impact of THMC processes on the response of rock specimens relevant for deep geothermal and shale gas formations. The effects of THMC processes were investigated on: (i) success of the hydraulic fracturing/hydro-shearing mechanism during stimulation stage, and (ii) closure of the created network of fractures during production stage.

The elastic, cyclic, creep, and failure characteristics of …


Quantifying The Seismic Vulnerability Of Bridges In Low To Moderate Seismicity Regions, John Edward Lens Jan 2019

Quantifying The Seismic Vulnerability Of Bridges In Low To Moderate Seismicity Regions, John Edward Lens

Graduate College Dissertations and Theses

The U.S. Congressional Research Service issued a report for Congress in May 2016, entitled” Earthquake Risk and U.S. Highway Infrastructure: Frequently Asked Questions” which highlighted the absence of a national database on the status of seismic vulnerability of bridges or other infrastructure, and thus no estimate of costs to retrofit vulnerable bridges. Low to moderate seismicity regions exist in each of the continental United States, with over 30 states having mostly or entirely low-to-moderate seismicity. Resources at state transportation agencies and municipalities are focused on higher seismicity regions, creating a gap in quantifying the system-wide seismic vulnerability despite an overall …


Edge-Of-Field Hydrology And Nutrient Fluxes Within Northeastern Agroecosystems: Evaluation Of Alternative Management Practices And Water Quality Models, Cameron Robert Twombly Jan 2019

Edge-Of-Field Hydrology And Nutrient Fluxes Within Northeastern Agroecosystems: Evaluation Of Alternative Management Practices And Water Quality Models, Cameron Robert Twombly

Graduate College Dissertations and Theses

Agricultural runoff is one of largest contributors of phosphorus (P), nitrogen (N), and sediment affecting freshwater systems in watersheds across the Northeastern U.S., including the Lake Champlain Basin in Vermont. Agricultural cropping systems, such as corn silage and haylands, used for dairy feed production have been shown to impact watershed hydrology and water quality. Agricultural best management practices (BMPs) have the potential to decrease runoff volumes and flow rates and the associated export of nutrients and sediment from agricultural fields. Many states in the Northeastern U.S., including Vermont, are beginning to require farmers to implement water quality BMPs and further …


Smart Classifiers And Bayesian Inference For Evaluating River Sensitivity To Natural And Human Disturbances: A Data Science Approach, Kristen Underwood Jan 2018

Smart Classifiers And Bayesian Inference For Evaluating River Sensitivity To Natural And Human Disturbances: A Data Science Approach, Kristen Underwood

Graduate College Dissertations and Theses

Excessive rates of channel adjustment and riverine sediment export represent societal challenges; impacts include: degraded water quality and ecological integrity, erosion hazards to infrastructure, and compromised public safety. The nonlinear nature of sediment erosion and deposition within a watershed and the variable patterns in riverine sediment export over a defined timeframe of interest are governed by many interrelated factors, including geology, climate and hydrology, vegetation, and land use. Human disturbances to the landscape and river networks have further altered these patterns of water and sediment routing.

An enhanced understanding of river sediment sources and dynamics is important for stakeholders, and …


Fluvial Processes In Motion: Measuring Bank Erosion And Suspended Sediment Flux Using Advanced Geomatic Methods And Machine Learning, Scott Douglas Hamshaw Jan 2018

Fluvial Processes In Motion: Measuring Bank Erosion And Suspended Sediment Flux Using Advanced Geomatic Methods And Machine Learning, Scott Douglas Hamshaw

Graduate College Dissertations and Theses

Excessive erosion and fine sediment delivery to river corridors and receiving waters degrade aquatic habitat, add to nutrient loading, and impact infrastructure. Understanding the sources and movement of sediment within watersheds is critical for assessing ecosystem health and developing management plans to protect natural and human systems. As our changing climate continues to cause shifts in hydrological regimes (e.g., increased precipitation and streamflow in the northeast U.S.), the development of tools to better understand sediment dynamics takes on even greater importance. In this research, advanced geomatics and machine learning are applied to improve the (1) monitoring of streambank erosion, (2) …


Sediment Mobilization From Streambank Failures: Model Development And Climate Impact Studies, Jody Juniper Stryker Jan 2017

Sediment Mobilization From Streambank Failures: Model Development And Climate Impact Studies, Jody Juniper Stryker

Graduate College Dissertations and Theses

This research incorporates streambank erosion and failure processes into a distributed watershed model and evaluates the impacts of climate change on the processes driving streambank sediment mobilization at a watershed scale. Excess sediment and nutrient loading are major water quality concerns for streams and receiving waters. Previous work has established that in addition to surface and road erosion, streambank erosion and failure are primary mechanisms that mobilize sediment and nutrients from the landscape. This mechanism and other hydrological processes driving sediment and nutrient transport are likely to be highly influenced by anticipated changes in climate, particularly extreme precipitation and flow …


Factors Influencing Mode Choice For Intercity Travel From Northern New England To Major Northeastern Cities, Sean Patrick Neely Jan 2016

Factors Influencing Mode Choice For Intercity Travel From Northern New England To Major Northeastern Cities, Sean Patrick Neely

Graduate College Dissertations and Theses

Long-distance and intercity travel generally make up a small portion of the total number of trips taken by an individual, while representing a large portion of aggregate distance traveled on the transportation system. While some research exists on intercity travel behavior between large metropolitan centers, this thesis addresses a need for more research on travel behavior between non-metropolitan areas and large metropolitan centers. This research specifically considers travel from home locations in northern New England, going to Boston, New York City, Philadelphia, and Washington, DC. These trips are important for quality of life, multimodal planning, and rural economies. This research …


A Framework For Estimating Nutrient And Sediment Loads That Leverages The Temporal Variability Embedded In Water Monitoring Data, Baxter G. Miatke Jan 2016

A Framework For Estimating Nutrient And Sediment Loads That Leverages The Temporal Variability Embedded In Water Monitoring Data, Baxter G. Miatke

Graduate College Dissertations and Theses

Rivers deliver significant macronutrients and sediments to lakes that can vary substantially throughout the year. These nutrient and sediment loadings, exacerbated by winter and spring runoff, impact aquatic ecosystem productivity and drive the formation of harmful algae blooms. The source, extent and magnitude of nutrient and sediment loading can vary drastically due to extreme weather events and hydrologic processes, such as snowmelt or high flow storm events, that dominate during a particular time period, making the temporal component (i.e., time over which the loading is estimated) critical for accurate forecasts. In this work, we developed a data-driven framework that leverages …


Evaluation Of Key Geomechanical Aspects Of Shallow And Deep Geothermal Energy, Robert Alexander Caulk Jan 2015

Evaluation Of Key Geomechanical Aspects Of Shallow And Deep Geothermal Energy, Robert Alexander Caulk

Graduate College Dissertations and Theses

Geothermal energy has become a focal point of the renewable energy revolution. Both shallow and deep types of geothermal energy have the potential to offset carbon emissions, reduce energy costs, and stimulate the economy. Before widespread geothermal exploration and exploitation can occur, both shallow and deep technologies require improvement by theoretical and experimental investigations. This thesis investigated one aspect of both shallow and deep geothermal energy technologies. First, a group of shallow geothermal energy piles was modeled numerically. The model was constructed, calibrated, and validated using available data collected from full-scale in-situ experimental energy piles. Following calibration, the model was …


Phosphate Removal And Recovery From Wastewater By Natural Materials For Ecologically Engineered Wastewater Treatment Systems, Daniel Thomas Curran Jan 2015

Phosphate Removal And Recovery From Wastewater By Natural Materials For Ecologically Engineered Wastewater Treatment Systems, Daniel Thomas Curran

Graduate College Dissertations and Theses

Eutrophication due to excess loading of phosphorus (P) is a leading cause of water quality degradation within the United States. The aim of this study was to investigate P removal and recovery with 12 materials (four calcite varieties, wollastonite, dolomite, hydroxylapatite, eggshells, coral sands, biochar, and activated carbon. This was accomplished through a series of batch experiments with synthetic wastewater solutions ranging from 10-100 mg PO₄-P/ L. The results of this study were used to establish large-scale, calcite-based column filter experiments located in the Rubenstein School of Environment and Natural Resources' Eco-Machine. Influent and effluent wastewater samples were routinely collected …