Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Physical Sciences and Mathematics

Statistical And Machine Learning Approaches To Describe Factors Affecting Preweaning Mortality Of Piglets, Md Towfiqur Rahman, Tami M. Brown-Brandl, Gary A. Rohrer, Sudhendu R. Sharma, Vamsi Manthena, Yeyin Shi Oct 2023

Statistical And Machine Learning Approaches To Describe Factors Affecting Preweaning Mortality Of Piglets, Md Towfiqur Rahman, Tami M. Brown-Brandl, Gary A. Rohrer, Sudhendu R. Sharma, Vamsi Manthena, Yeyin Shi

Department of Biological Systems Engineering: Papers and Publications

High preweaning mortality (PWM) rates for piglets are a significant concern for the worldwide pork industries, causing economic loss and well-being issues. This study focused on identifying the factors affecting PWM, overlays, and predicting PWM using historical production data with statistical and machine learning models. Data were collected from 1,982 litters from the United States Meat Animal Research Center, Nebraska, over the years 2016 to 2021. Sows were housed in a farrowing building with three rooms, each with 20 farrowing crates, and taken care of by well-trained animal caretakers. A generalized linear model was used to analyze the various sow, …


Reconstructing 42 Years (1979–2020) Of Great Lakes Surface Temperature Through A Deep Learning Approach, Miraj Kayastha, Tao Liu, Daniel Titze, Timothy C. Havens, Chenfu Huang, Pengfei Xue Aug 2023

Reconstructing 42 Years (1979–2020) Of Great Lakes Surface Temperature Through A Deep Learning Approach, Miraj Kayastha, Tao Liu, Daniel Titze, Timothy C. Havens, Chenfu Huang, Pengfei Xue

Michigan Tech Publications, Part 2

Accurate estimates for the lake surface temperature (LST) of the Great Lakes are critical to understanding the regional climate. Dedicated lake models of various complexity have been used to simulate LST but they suffer from noticeable biases and can be computationally expensive. Additionally, the available historical LST datasets are limited by either short temporal coverage (<30 >years) or lower spatial resolution (0.25° × 0.25°). Therefore, in this study, we employed a deep learning model based on Long Short-Term Memory (LSTM) neural networks to produce a daily LST dataset for the Great Lakes that spans an unparalleled 42 years (1979–2020) at …


Historical And Forecasted Kentucky Specific Slope Stability Analyses Using Remotely Retrieved Hydrologic And Geomorphologic Data, Daniel M. Francis Jan 2023

Historical And Forecasted Kentucky Specific Slope Stability Analyses Using Remotely Retrieved Hydrologic And Geomorphologic Data, Daniel M. Francis

Theses and Dissertations--Civil Engineering

Hazard analyses of rainfall-induced landslides have typically been observed to experience a lack of inclusion of measurements of soil moisture within a given soil layer at a site of interest. Soil moisture is a hydromechanical variable capable of both strength gains and reductions within soil systems. However, in situ monitoring of soil moisture at every site of interest is an unfeasible goal. Therefore, spatiotemporal estimates of soil moisture that are representative of in-situ conditions are required for use in subsequent landslide hazard analyses.

This study brings together various techniques for the acquisition, modeling, and forecasting of spatiotemporal retrievals of soil …


Learning From Machines: Insights In Forest Transpiration Using Machine Learning Methods, Morgan Tholl Jul 2022

Learning From Machines: Insights In Forest Transpiration Using Machine Learning Methods, Morgan Tholl

Dissertations and Theses

Machine learning has been used as a tool to model transpiration for individual sites, but few models are capable of generalizing to new locations without calibration to site data. Using the global SAPFLUXNET database, 95 tree sap flow data sites were grouped using three clustering strategies: by biome, by tree functional type, and through use of a k-means unsupervised clustering algorithm. Two supervised machine learning algorithms, a random forest algorithm and a neural network algorithm, were used to build machine learning models that predicted transpiration for each cluster. The performance and feature importance in each model were analyzed and compared …


Data-Driven Framework For Understanding & Modeling Ride-Sourcing Transportation Systems, Bishoy Kelleny May 2022

Data-Driven Framework For Understanding & Modeling Ride-Sourcing Transportation Systems, Bishoy Kelleny

Civil & Environmental Engineering Theses & Dissertations

Ride-sourcing transportation services offered by transportation network companies (TNCs) like Uber and Lyft are disrupting the transportation landscape. The growing demand on these services, along with their potential short and long-term impacts on the environment, society, and infrastructure emphasize the need to further understand the ride-sourcing system. There were no sufficient data to fully understand the system and integrate it within regional multimodal transportation frameworks. This can be attributed to commercial and competition reasons, given the technology-enabled and innovative nature of the system. Recently, in 2019, the City of Chicago the released an extensive and complete ride-sourcing trip-level data for …


Application Of Machine Learning To Predict The Performance Of An Emipg Reactor Using Data From Numerical Simulations, Owen Sedej, Eric G. Mbonimpa, Trevor Sleight, Jeremy Slagley Mar 2022

Application Of Machine Learning To Predict The Performance Of An Emipg Reactor Using Data From Numerical Simulations, Owen Sedej, Eric G. Mbonimpa, Trevor Sleight, Jeremy Slagley

Faculty Publications

Microwave-driven plasma gasification technology has the potential to produce clean energy from municipal and industrial solid wastes. It can generate temperatures above 2000 K (as high as 30,000 K) in a reactor, leading to complete combustion and reduction of toxic byproducts. Characterizing complex processes inside such a system is however challenging. In previous studies, simulations using computational fluid dynamics (CFD) produced reproducible results, but the simulations are tedious and involve assumptions. In this study, we propose machine-learning models that can be used in tandem with CFD, to accelerate high-fidelity fluid simulation, improve turbulence modeling, and enhance reduced-order models. A two-dimensional …


Application Of Machine Learning Models With Numerical Simulations Of An Experimental Microwave Induced Plasma Gasification Reactor, Owen D. Sedej Mar 2022

Application Of Machine Learning Models With Numerical Simulations Of An Experimental Microwave Induced Plasma Gasification Reactor, Owen D. Sedej

Theses and Dissertations

This thesis aims to contribute to the future development of this technology by providing an in-depth literature review of how this technology physically operates and can be numerically modeled. Additionally, this thesis reviews literature of machine learning models that have been applied to gasification to make accurate predictions regarding the system. Finally, this thesis provides a framework of how to numerically model an experimental plasma gasification reactor in order to inform a variety of machine learning models.


Supervised Machine Learning Techniques Applied To Low-Cost Air Quality Sensor Suites, Peter Wahman Jan 2022

Supervised Machine Learning Techniques Applied To Low-Cost Air Quality Sensor Suites, Peter Wahman

All Undergraduate Theses and Capstone Projects

Low-cost PM sensors have garnered interest for their ability to reduce the cost of investigating PM concentrations in both indoor and outdoor spaces. They perform well in high concentration lab testing with correlation coefficients greater than 0.9. In real-world applications, the correlation coefficients drop significantly because of sensing floors and adverse ambient conditions. There are plenty of supervised machine learning techniques that aim to correct the measurements ranging from linear regression to more advanced neural networks and random forests. This work aims to use those more complicated techniques to adjust the measurements using other data sets gathered by a sensor …


A Citizen-Science Approach For Urban Flood Risk Analysis Using Data Science And Machine Learning, Candace Agonafir Jan 2022

A Citizen-Science Approach For Urban Flood Risk Analysis Using Data Science And Machine Learning, Candace Agonafir

Dissertations and Theses

Street flooding is problematic in urban areas, where impervious surfaces, such as concrete, brick, and asphalt prevail, impeding the infiltration of water into the ground. During rain events, water ponds and rise to levels that cause considerable economic damage and physical harm. The main goal of this dissertation is to develop novel approaches toward the comprehension of urban flood risk using data science techniques on crowd-sourced data. This is accomplished by developing a series of data-driven models to identify flood factors of significance and localized areas of flood vulnerability in New York City (NYC). First, the infrastructural (catch basin clogs, …


Assessing Machine Learning Utility In Predicting Hydrologic And Nitrate Dynamics In Karst Agroecosystems, Timothy Mcgill Jan 2022

Assessing Machine Learning Utility In Predicting Hydrologic And Nitrate Dynamics In Karst Agroecosystems, Timothy Mcgill

Theses and Dissertations--Biosystems and Agricultural Engineering

Seasonal hypoxia in the Gulf of Mexico and harmful algal blooms experienced in many inland freshwater bodies is partially driven due to excessive nitrogen loading seen from agricultural watersheds. Within the Mississippi/Atchafalaya River Basin, many areas are underlain with karst features, and efforts to reduce nitrogen contributions from these areas have had varying success, due to lacking a complete understanding of nutrient dynamics in karst agricultural systems. To improve the understanding of nitrogen cycling in these systems, 35 months of high resolution in situ water quality and atmospheric data were collected and fed into a two-hidden layer extreme learning machine …


Review Of Forecasting Univariate Time-Series Data With Application To Water-Energy Nexus Studies & Proposal Of Parallel Hybrid Sarima-Ann Model, Cory Sumner Yarrington Jan 2021

Review Of Forecasting Univariate Time-Series Data With Application To Water-Energy Nexus Studies & Proposal Of Parallel Hybrid Sarima-Ann Model, Cory Sumner Yarrington

Graduate Theses, Dissertations, and Problem Reports

The necessary materials for most human activities are water and energy. Integrated analysis to accurately forecast water and energy consumption enables the implementation of efficient short and long-term resource management planning as well as expanding policy and research possibilities for the supportive infrastructure. However, the integral relationship between water and energy (water-energy nexus) poses a difficult problem for modeling. The accessibility and physical overlay of data sets related to water-energy nexus is another main issue for a reliable water-energy consumption forecast. The framework of urban metabolism (UM) uses several types of data to build a global view and highlight issues …


Enhanced Traffic Incident Analysis With Advanced Machine Learning Algorithms, Zhenyu Wang Dec 2020

Enhanced Traffic Incident Analysis With Advanced Machine Learning Algorithms, Zhenyu Wang

Computational Modeling & Simulation Engineering Theses & Dissertations

Traffic incident analysis is a crucial task in traffic management centers (TMCs) that typically manage many highways with limited staff and resources. An effective automatic incident analysis approach that can report abnormal events timely and accurately will benefit TMCs in optimizing the use of limited incident response and management resources. During the past decades, significant efforts have been made by researchers towards the development of data-driven approaches for incident analysis. Nevertheless, many developed approaches have shown limited success in the field. This is largely attributed to the long detection time (i.e., waiting for overwhelmed upstream detection stations; meanwhile, downstream stations …


Truck Trailer Classification Using Side-Fire Light Detection And Ranging (Lidar) Data, Olcay Sahin Apr 2020

Truck Trailer Classification Using Side-Fire Light Detection And Ranging (Lidar) Data, Olcay Sahin

Civil & Environmental Engineering Theses & Dissertations

Classification of vehicles into distinct groups is critical for many applications, including freight and commodity flow modeling, pavement management and design, tolling, air quality monitoring, and intelligent transportation systems. The Federal Highway Administration (FHWA) developed a standardized 13-category vehicle classification ruleset, which meets the needs of many traffic data user applications. However, some applications need high-resolution data for modeling and analysis. For example, the type of commodity being carried must be known in the freight modeling framework. Unfortunately, this information is not available at the state or metropolitan level, or it is expensive to obtain from current resources.

Nevertheless, using …


Smart Classifiers And Bayesian Inference For Evaluating River Sensitivity To Natural And Human Disturbances: A Data Science Approach, Kristen Underwood Jan 2018

Smart Classifiers And Bayesian Inference For Evaluating River Sensitivity To Natural And Human Disturbances: A Data Science Approach, Kristen Underwood

Graduate College Dissertations and Theses

Excessive rates of channel adjustment and riverine sediment export represent societal challenges; impacts include: degraded water quality and ecological integrity, erosion hazards to infrastructure, and compromised public safety. The nonlinear nature of sediment erosion and deposition within a watershed and the variable patterns in riverine sediment export over a defined timeframe of interest are governed by many interrelated factors, including geology, climate and hydrology, vegetation, and land use. Human disturbances to the landscape and river networks have further altered these patterns of water and sediment routing.

An enhanced understanding of river sediment sources and dynamics is important for stakeholders, and …


Audio-Based Productivity Forecasting Of Construction Cyclic Activities, Chris A. Sabillon Jan 2017

Audio-Based Productivity Forecasting Of Construction Cyclic Activities, Chris A. Sabillon

Electronic Theses and Dissertations

Due to its high cost, project managers must be able to monitor the performance of construction heavy equipment promptly. This cannot be achieved through traditional management techniques, which are based on direct observation or on estimations from historical data. Some manufacturers have started to integrate their proprietary technologies, but construction contractors are unlikely to have a fleet of entirely new and single manufacturer equipment for this to represent a solution. Third party automated approaches include the use of active sensors such as accelerometers and gyroscopes, passive technologies such as computer vision and image processing, and audio signal processing. Hitherto, most …