Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemistry

2016

Journal

Cathode material

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Research And Application Of Key Materials For Sodium-Ion Batteries, Yong-Chang Liu, Cheng-Cheng Chen, Ning Zhang, Liu-Bin Wang, Xing-De Xiang, Jun Chen Oct 2016

Research And Application Of Key Materials For Sodium-Ion Batteries, Yong-Chang Liu, Cheng-Cheng Chen, Ning Zhang, Liu-Bin Wang, Xing-De Xiang, Jun Chen

Journal of Electrochemistry

Sodium-ion batteries (SIBs) have been considered as a potential large-scale energy storage technology owing to the abundance, wide distribution, and low price of sodium resources. However, the larger and heavier sodium ion as compared to lithium ion makes it difficult to identify appropriate electrode materials with the capability for fast and stable sodium-ion insertion/extraction. Furthermore, the optimization of electrolyte, the matching of cathode and anode materials, and the construction of sodium-ion full batteries with high-performance, high-safety, and low-cost are urgently needed in order to make SIBs commercially available. This review summarizes the up-to-date research progresses in key materials (including cathode, …


Electrochemical And In Situ X-Ray Absorption Fine Structure Study Of Li-Rich Cathode Materials, Meng-Yan Hou, Hong-Liang Bao, Ke Wang, Jian-Qiang Wang, Yong-Yao Xia Jun 2016

Electrochemical And In Situ X-Ray Absorption Fine Structure Study Of Li-Rich Cathode Materials, Meng-Yan Hou, Hong-Liang Bao, Ke Wang, Jian-Qiang Wang, Yong-Yao Xia

Journal of Electrochemistry

A series of the lithium-rich and manganese-based layered structure xLi2MnO3•(1-x)LiMn1/3Ni1/3Co1/3O2 (x = 0.3,0.5,0.7) materials were synthesized by a co-precipitation method, and followed by a solid-state reaction process. By comparing the first cycle efficiency, the reversible discharge capacity, the cycling stability and the voltage decay during the charge/discharge cycling process, the material with the composition of 0.5Li2MnO3•0.5LiMn1/3Ni1/3Co1/3O2was found to show the best electrochemical performance. The lithium storage mechanism and thermal stability of the de-lithiated compound were also investigated …