Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

A Comparative Study Of Polyurethane Nanofibers With Different Patterns And Its Analogous Nanofibers Containing Mwcnts, Javier Macossay-Torres, Faheem A. Sheikh, Hassan Ahmad, Hern Kim, Gary L. Bowlin Sep 2015

A Comparative Study Of Polyurethane Nanofibers With Different Patterns And Its Analogous Nanofibers Containing Mwcnts, Javier Macossay-Torres, Faheem A. Sheikh, Hassan Ahmad, Hern Kim, Gary L. Bowlin

Chemistry Faculty Publications and Presentations

Tissue engineering is a multidisciplinary field that has evolved in various dimensions in recent years. One of the main aspects in this field is the proper adjustment and final compatibility of implants at the target site of surgery. For this purpose, it is desired to have the materials fabricated at the nanometer scale, since these dimensions will ultimately accelerate the fixation of implants at the cellular level. In this study, electrospun polyurethane nanofibers and their analogous nanofibers containing MWCNTs are introduced for tissue engineering applications. Since MWCNTs agglomerate to form bundles, a high intensity sonication procedure was used to disperse …


Nanostructured Cerium Oxide Based Catalysts: Synthesis, Physical Properties, And Catalytic Performance, Yunyun Zhou Aug 2015

Nanostructured Cerium Oxide Based Catalysts: Synthesis, Physical Properties, And Catalytic Performance, Yunyun Zhou

Department of Chemistry: Dissertations, Theses, and Student Research

Cerium oxide is an extensively used industrial catalyst with applications as diverse as catalysts for automobile exhaust, petroleum cracking and organic chemicals synthesis. The catalytic activity of cerium oxide is dependent upon its structural properties, especially the oxygen vacancy defects. While recent advances in characterization techniques have dramatically improved our understanding of cerium oxide functionality, many atomic features in cerium oxide contributing to the overall catalytic reactivity are not yet well-understood. This dissertation focuses on the structural studies of catalytically active cerium oxides with different compositions, phases and morphologies, and their utilizations to establish fundamental understandings of cerium oxide based …


Nanoceria Exposure To Kidney Beans (Phaseolus Vulgaris): Implications On Plant Physiology, Nutrition And Their Transfer To Next Trophic Level, Sanghamitra Majumdar Jan 2015

Nanoceria Exposure To Kidney Beans (Phaseolus Vulgaris): Implications On Plant Physiology, Nutrition And Their Transfer To Next Trophic Level, Sanghamitra Majumdar

Open Access Theses & Dissertations

Previous studies investigating the effects of cerium oxide nanoparticles (nanoceria, nCeO2) on plants have primarily focused on the physiological and biochemical changes at early growth stages. Comprehensive information on the effects of nCeO2 through the entire life cycle of plants and the nutritional quality of the edible tissues is limited. No studies have been reported on the interactions between nCeO2 and common beans (Phaseolus vulgaris). Common beans are leguminous crops, which are societally important due to their nutritional benefits. The beans are rich in proteins and essential nutrients like folate, iron, zinc, molybdenum and magnesium, and are consumed worldwide. This …


Computational Investigations Of Potential Energy Function Development For Metal-Organic Framework Simulations, Metal Carbenes, And Chemical Warfare Agents, Christian R. Cioce Jan 2015

Computational Investigations Of Potential Energy Function Development For Metal-Organic Framework Simulations, Metal Carbenes, And Chemical Warfare Agents, Christian R. Cioce

USF Tampa Graduate Theses and Dissertations

Metal-Organic Frameworks (MOFs) are three-dimensional porous nanomaterials with a variety of applications, including catalysis, gas storage and separation, and sustainable energy. Their potential as air filtration systems is of interest for designer carbon capture materials. The chemical constituents (i.e. organic ligands) can be functionalized to create rationally designed CO2 sequestration platforms, for example. Hardware and software alike at the bleeding edge of supercomputing are utilized for designing first principles-based molecular models for the simulation of gas sorption in these frameworks. The classical potentials developed herein are named PHAST -- Potentials with High Accuracy, Speed, and Transferability, and thus are designed …